
Script Debugger Help

Welcome to Script Debugger, from Late Night Software!

Script Debugger is a powerful environment for easy, rapid development of AppleScript
solutions.

You’ll discover that Script Debugger is the best way to:

• Explore scriptable applications.

◦ Examine, navigate and search an application’s dictionary.

◦ Probe a running application’s scriptable objects and values.

• Develop AppleScript code.

◦ Script Debugger helps you edit code and insert boilerplate constructs.

◦ Run your code, examine the result, and view the Apple events that you are
sending and receiving.

◦ Run your code a little at a time to better understand how it works (or to
figure out why it doesn’t).

About This Help Document:

Use the hyperlinks, and the navigation aids at the top and bottom of each page, to learn
about Script Debugger or to reach the information you need.

This help document is searchable (using Help Viewer).

For a complete Table of Contents, click here.

Or, click the blue arrow in the upper right corner repeatedly, to read every page in order, like
a book!

Further Details:

Opening and Saving Scripts
Explore

www.princexml.com
Prince - Personal Edition
This document was created with Prince, a great way of getting web content onto paper.

http://www.latenightsw.com/

Develop
Reference

Script Debugger Help > Contents

Opening and Saving Scripts

A script is a file consisting of AppleScript code. Scripts are Script Debugger’s native
documents. Read on to learn how Script Debugger opens and saves scripts.

Learn how Script Debugger:

• Opens scripts. What file formats can Script Debugger open? What happens if there’s
difficulty opening a file?

• Saves scripts. What formats does Script Debugger save in? What additional
information does Script Debugger save?

Also, Script Debugger gives you access to secondary information about a script file. Learn
about:

• Description. A script’s description can serve as a reminder to the developer, an
explanation to users, and a splash screen in an applet.

• Manifest. Script Debugger creates a summary of what applications and scripting
additions are needed in order for your script to be edited and executed.

• Library. A script can depend on the loading of code from other scripts. Script
Debugger automates this aspect of AppleScript.

Further Details:

Open
Save
Description
Library
Manifest

Explore

Script Debugger Help > Opening and Saving Scripts > Contents

Open

Here’s how to open a file with Script Debugger.

To make a new script, choose File > New. (Alternatively, there are various ways that you
can make a new script targeting a particular application.)

Here’s how to set the default appearance and features of a new script.

To open an existing script, do any of the following:

• Choose File > Open.

• If you’ve recently had this script open, choose it from File > Recent Scripts.

• Drag and drop the script file onto Script Debugger’s icon in the Finder or the Dock.

• If the script’s owner is Script Debugger, double-click it in the Finder. (But that
doesn’t work for an applet, since by default when an applet is opened from the
Finder, it runs.)

A General preference lets you tell Script Debugger to warn you if opening an existing script
might cause an application to launch.

Learn what files Script Debugger can open.

Learn how Script Debugger can help when there’s trouble opening a file.

Further Details:

Compatibility
Opening a Compiled Script as Text

Save

Script Debugger Help > Opening and Saving Scripts > Open > Contents

Compatibility

Script Debugger can open any of AppleScript’s native file types from any period in
AppleScript’s history. This includes:

• Compiled script file with the bytecode in the resource fork. This is the oldest
format, going back as far as AppleScript itself.

• Compiled script file with the bytecode in the data fork. This is the default
format created by the current version of Apple’s Script Editor.

• Script bundle. This is a bundle with the bytecode as a data fork compiled script file
inside the bundle. It is compatible with Panther (Mac OS X 10.3) and later.

• Applet. Script Debugger can open applets created on any system.

• Applet bundle. This is a bundle applet format compatible with Panther (Mac OS X
10.3) and later.

When Script Debugger opens a script, it retains the current values of the script’s
top-level entities (such as properties).

Script Debugger can also open a text file. If the file starts with a UTF-8 or UTF-16 Unicode
BOM (byte order mark), it will be interpreted accordingly; otherwise, the file is assumed to
be in the MacRoman encoding. Line endings can be Mac or Unix.

Script Debugger can also save in a full range of formats.

Opening a Compiled Script as Text

http://unicode.org/faq/utf_bom.html
http://unicode.org/faq/utf_bom.html
http://en.wikipedia.org/wiki/Mac_OS_Roman

Script Debugger Help > Opening and Saving Scripts > Open > Contents

Opening a Compiled Script as
Text

Sometimes, AppleScript prevents Script Debugger from opening a compiled script file, or
shows the file’s contents with raw Apple event codes. This indicates that something has gone
wrong with the decompilation process. For example, an application or scripting addition
needed by the script is missing, or a script’s internal alias to an application has broken.

If the script was originally saved with Script Debugger, you can open the script as text. To
do so:

• Choose File > Recover Script.

This feature works because when Script Debugger saves a compiled script, it saves not only
the compiled bytecode but also the uncompiled text. The uncompiled text is placed in the
file’s resource fork (or, if the file is a bundle, in a file within the bundle).

Warning: You can accidentally strip away a compiled script’s resource fork. You
might, for example, save the compiled script file on a non-HFS filing system (true
Unix, or Windows), or send it through email without compressing it, or open it with
some badly behaved script editor application. Also, if you edit a script with some
other script editor application, the stored uncompiled text may no longer match the
current state of the bytecode. If that happens, the original text is gone, and if there
is then a problem with opening the compiled script file, this feature won’t work
(Script Debugger won’t be able to recover the original text).

Script Debugger will automatically offer to let you take advantage of this feature, under two
circumstances:

• If you attempt to open a compiled script that targets an application which must
be launched in order for AppleScript to decompile it. For example, suppose BBEdit
is not running and you open a compiled script that targets BBEdit. BBEdit has a
dynamic dictionary, so AppleScript wants to launch it in order to display the script.
Script Debugger detects this and can optionally intervene, presenting this dialog:

You can proceed to open the script (and allow BBEdit to launch) if you wish, but
perhaps the overhead of launching an application just to read a script seems
unwarranted. If this script was saved with Script Debugger, it contains a text
version, and you can click Open As Text to open that instead. Thus you can read the
script without launching BBEdit. (But to compile the script you will have to let
AppleScript launch BBEdit.)

If the script does not contain a text version, the Open As Text button will
not be present.

• If you attempt to open a compiled script that targets a missing application. In
this case, on Mac OS X 10.4 (Tiger) and earlier, after you cancel out of the
AppleScript “Where is…?” dialog, Script Debugger will offer you a chance to open the
script’s text version, if it has one:

(This won’t happen on Mac OS X 10.5 and later because, there, when you cancel out
of the “Where is…?” dialog, AppleScript opens the script anyway, displaying raw
Apple event codes if necessary.)

Compatibility

Script Debugger Help > Opening and Saving Scripts > Contents

Save

To save a script with Script Debugger:

• Choose File > Save.

• Choose File > Save As. This creates a new file or, if you wish, overwrites the original
file.

• Choose File > Save A Copy As. This creates a new file but the script window
continues to show the original file.

Scripts can be saved in various formats. If you are creating a new file, options for specifying
the desired format appear in the Save dialog. Alternatively, you can specify format options
by choosing from these hierarchical menus:

• File > Script Format

• File > Application Options (if it’s an applet)

To save a script, the script must be compiled. If you wish to save a script without compiling
you can save it as text.

A compiled script (or application) can also be exported as a run-only script.

Further Details:

Formats
Run-Only Script
What Is Saved
File Owner
Spotlight and Quick Look

Open Description

Script Debugger Help > Opening and Saving Scripts > Save > Contents

Formats

Script Debugger can save scripts in three basic forms: as a compiled script file, as an applet
(application), or as text.

In each case, you have various options about the resulting format and other details.

A compiled script (or application) can also be exported as a run-only script.

Further Details:

Compiled Script
Application
Text

Run-Only Script

Script Debugger Help > Opening and Saving Scripts > Save >
Formats > Contents

Compiled Script

Script Debugger can save compiled script files in three formats. You can choose a format
either from the File > Script Format hierarchical menu or from the Save dialog.

• Compiled Script (Data Fork). A file with the compiled bytecode in the data fork.
This is the default format created by the current version of Apple’s Script Editor. It is
backwards compatible to all versions of Mac OS X and to very late versions of
AppleScript in Mac OS 9.

• Compiled Script (Bundle). A bundle (package) with the bytecode as a data fork
compiled script file inside the bundle. This format was introduced in Panther (Mac
OS X 10.3) and is not backwards compatible to earlier systems. It has the
advantage that you can store ancillary files inside the bundle, but be warned that
some applications do not understand this format.

• Compiled Script (Resource Fork). A file with the compiled bytecode in the
resource fork. This is the oldest format and is compatible with all Macintosh systems
and all versions of AppleScript.

Keeping the bytecode in the resource fork is, however, also the riskiest format. You
can accidentally strip away a compiled script’s resource fork. You might, for
example, save the compiled script file on a non-HFS filing system (true Unix, or
Windows), or send it through email without compressing it, or open it with some
badly behaved script editor application.

Warning: A compiled script saved in debug mode will not run normally in other
environments (and will not even open in Apple’s Script Editor). Unless that’s what you intend,
be sure to save the script in normal mode when you’re finished debugging it.

Application

Script Debugger Help > Opening and Saving Scripts > Save >
Formats > Contents

Application

A compiled script can be saved as an application, traditionally known as an applet. An applet
is a stand-alone application. When opened in the Finder, the script runs. The applet’s script
can be edited in Script Debugger by opening it with File > Open or by dropping the applet
onto Script Debugger’s Dock or Finder icon. You can save a script as an applet and leave the
script open in Script Debugger. This allows you to test the script from the Finder and then
easily edit it in Script Debugger.

Script Debugger has some further features for helping you test a script that is
destined to be saved as an applet. You can test individual handlers in the applet,
and you can debug the applet while it is running.

Script Debugger can save applications in two formats. You can choose a format either from
the File > Script Format hierarchical menu or from the Save dialog.

• Application (Carbon). This format is compatible with Mac OS X and with late
versions of earlier systems that use CarbonLib.

• Application (Bundle). This format was introduced in Panther (Mac OS X 10.3) and
is not backwards compatible to earlier systems. It has the advantage that you can
store ancillary files inside the bundle.

There also used to be a “Classic applet” format — an applet compatible with
systems and AppleScript versions before Mac OS X, which cannot be run as Mac OS
X-native. Mac OS X 10.5 (Leopard) has abandoned Classic, so such an applet
cannot run at all. Script Debugger 4.5 will not save in this format. It can open a
Classic applet, but when you try to save you will be compelled to choose another
format. If you need to save a Classic applet, use an earlier version of Script
Debugger.

Besides the format, you can also set further options for the behavior of the resulting
application. To do so, use the checkboxes in the Save dialog, or choose from the hierarchical
File > Application Options menu. (You can also add Stay Open and Show Startup buttons to
the script window’s toolbar. They change their names and icons to indicate whether the
setting is on or off.)

• Show Startup Screen. The script’s description is used as a “splash screen” when
the applet starts up. This splash screen also contains buttons allowing the user to
quit or run the applet.

• Stay Open. An applet that does not stay open runs its script when opened and then
automatically quits. An applet that does stay open does not automatically quit after
running its script (the user can choose its Quit menu item to quit it later). This is
useful if, for example, the applet runs a handler periodically at idle time.

Warning: An application saved in debug mode will not run normally (when launched, it will
initiate an external debugging session in Script Debugger). Unless that’s what you intend, be
sure to save the application in normal mode when you’re finished debugging it.

Compiled Script Text

Script Debugger Help > Opening and Saving Scripts > Save >
Formats > Contents

Text

You can save a script as text, without compiling. The result is an ordinary text file (in
UTF-8 encoding, with an initial BOM).

To do so, do either of the following:

• Choose File > Save, File > Save As, or File > Save A Copy As, and choose Text from
the popup menu in the Save dialog.

• Choose File > Script Format > Text.

You may need to save a script without compiling for a variety of reasons:

• You want to save your work, but the script doesn’t compile (and you don’t have time
to figure out why right now).

• You want to store the script in a form that’s guaranteed to be readable on another
computer. (A compiled script file might fail to open on another computer for a
variety of reasons.)

If you wish, you can specify line endings for a text file. To do so, use the Text Line Endings
popup menu in the File > Save As dialog. In general you should not have to do this. If you
leave the line endings setting at As Is (Mixed), line endings will be left alone. Any other
setting will force line endings to be set at some specific value, and this can alter the
functionality of your script (as explained here). (To view line endings as they are now in your
script, you can show invisibles.)

Application

Script Debugger Help > Opening and Saving Scripts > Save > Contents

Run-Only Script

A run-only script contains the script’s compiled bytecode but does not contain the further
information needed to decompile and display it. A run-only script is typically used as a way of
distributing a script so that other users can run the script but cannot view or modify the
script’s source code.

To save a script as run-only:

• Choose File > Export > Run-Only Script. (You can also add an Export Run-Only
button to the script window’s toolbar.)

The resulting Save dialog contains the same format options as for an ordinary compiled script
or application.

It also contains a checkbox, “Make Bundled Scripts Run-Only”. This is useful in
cases where you’ve added extra scripts to a script bundle or application bundle. If
you don’t check it, the bundle’s main script will be saved as run-only, but the extra
scripts in the bundle will not be.

A run-only script cannot be read or edited ever again, even by you, its creator! This
is why Script Debugger implements this feature as a form of export. After exporting as run-
only, your original script is unaffected (and therefore remains editable). If you edit your
original script and you wish to propagate the changes to the run-only version of the script,
export it again.

Formats What Is Saved

Script Debugger Help > Opening and Saving Scripts > Save > Contents

What Is Saved

Script Debugger saves the following information into a compiled script file:

• The compiled script bytecode.

• The script’s description, if any.

• Persistent information such as the current values of script properties.

• Script window state (such as its size and position) and view settings.

• The open or closed state of the result drawer — but this will be restored the next
time you open the file only if you have checked the “Remember Result drawer state”
General preference.

• Apple Event Log window tab view and mode settings.

• Libraries.

• Expressions.

• Breakpoints, if the script is saved in debug mode.

Run-Only Script File Owner

Script Debugger Help > Opening and Saving Scripts > Save > Contents

File Owner

When a file is opened from the Finder, it is opened by the application that owns it. Therefore,
since applications other than Script Debugger (such as Apple’s Script Editor) can claim
ownership of script files, you might want to control the ownership of files created by Script
Debugger.

To do so, go to the General preference pane and select from the Saving radio buttons.

• If you choose Script Debugger is always creator, any file saved by Script
Debugger will have its creator code changed to Script Debugger.

• If you choose Keep original creator, creator codes of saved files not created by
Script Debugger will be left untouched, but files created by Script Debugger will
have Script Debugger’s creator code.

• If you choose No creator, any file saved by Script Debugger will have no creator
code.

In theory, Mac OS X decides a file’s owner based on the internally stored creator code, if
there is one; otherwise, it uses the filename extension (.scpt for a compiled script file, .scptd
for a compiled script bundle, .applescript for a script text file). In reality, the interplay
between these two modes of determining a file’s owner is somewhat unpredictable. Script
Debugger offers the option to save files with no creator, thus forcing Mac OS X to fall back on
the filename extension to determine ownership. Additionally, you can check Default editor
for OSA scripts, applets and droplets in the General preference pane as a quick way of
setting Script Debugger as the owner for files with the relevant filename extensions.

What Is Saved Spotlight and Quick Look

Script Debugger Help > Opening and Saving Scripts > Save > Contents

Spotlight and Quick Look

Script Debugger supports both Spotlight and Quick Look access to saved compiled script files.

Spotlight

Spotlight is an indexing technology, introduced in Mac OS X 10.4 (Tiger). It keeps track of
files and their contents and allows you to search rapidly for a file based on its name or its
contents. If you can remember a word or two used in your file, you can find it quickly, rather
than having to remember what folder it’s in.

Script Debugger contains a “Spotlight importer” for compiled script files. This means that if
Script Debugger is present on your computer, AppleScript compiled scripts are searchable
with Spotlight.

Besides the script’s name and contents, you can search in its description, and you can search
on the name of the OSA language that the script uses.

If Spotlight stops finding the contents of compiled scripts on your machine, it is
likely that the Spotlight indexing system has become confused. You can compel
your primary hard disk to rebuild its Spotlight index by saying sudo mdutil -E / in
the Terminal; for more information, see the mdutil documentation.

Quick Look

Quick Look is a technology, introduced in Mac OS X 10.5 (Leopard), for viewing a preview of
the contents of a file without the overhead of opening that file in the application that owns it.

Script Debugger contains a “Quick Look generator” for compiled script files and applets. This
means that the system is provided with the information it needs to translate your file into a
preview that Quick Look can present. If a script has been saved with Script Debugger, it will
be viewable with Quick Look “in color” (that is, with all the AppleScript compiled script text
formatting); otherwise, it will appear in Quick Look as plain text.

Note that because you’re just “peeking” at the script’s text with Quick Look, there is none of
the overhead involved with actually opening the script: there is no decompilation and
therefore there is no need to launch any targeted applications.

File Owner

/Users/mattleopard/Desktop/rosiehelpnew/x-man-page:/mdutil

Script Debugger Help > Opening and Saving Scripts > Contents

Description

A script can have a description. This can serve as a reminder to the developer, an
explanation to users, and as a splash screen in an applet.

To access a script’s description:

• Choose File > Description.

The description appears in a dialog. It consists of styled text. Text styling will be maintained
in an applet’s splash screen.

Optionally, Script Debugger can show you whether a script has a description
attached. Choose View > Customize Toolbar and drag the Description icon into the
toolbar. The icon indicates whether the description has any text. The illustration
below shows the icon for a script without and with a description, respectively.

Save Library

Script Debugger Help > Opening and Saving Scripts > Contents

Library

Script Debugger allows parts of a script to be kept in a separate, secondary compiled script
file. The secondary file is called a library. With a library, your scripts can easily make use of
common code. If the code in the library changes, scripts that use the library inherit the
changed code automatically when they are compiled.

If you’re going to make extensive use of libraries, it might be a good idea to add the Libraries
icon to your script window toolbar. To do so, choose View > Customize Toolbar and drag the
Libraries icon into the toolbar. The icon indicates whether the script has libraries. In addition,
it contains a popup menu which you can use to add a library from your Script Libraries folder
instantly to your script.

The illustration below shows: (1) the toolbar icon for a script without libraries; (2) the use of
the toolbar popup menu to add a library to a script; (3) the toolbar icon for a script with
libraries.

The popup menu automatically looks for library files in Application Support/Script
Debugger 4.5/Script Libraries, both in your user ~/Library/ and in the top-level
/Library/ directory. Therefore you are encouraged to keep library files in one of
these locations, so that the popup menu can find them and you can take advantage
of this feature. (The popup menu also looks for a Script Libraries folder in the same
folder as Script Debugger itself, but use of this feature is not encouraged.)

To add a library file to your script:

• If the library file is in a Script Libraries folder (in one of the specified locations), use
the toolbar icon popup menu as shown above.

• Or, choose File > Libraries (or click the Libraries toolbar button) to summon the
Libraries dialog, and then:

◦ If the library file is in your Script Libraries folder, click the first button
() to access the popup menu and choose a library file. (Option-choose
to reveal the library file in the Finder.) This popup menu is the same as the
toolbar icon popup menu.

◦ Or, click the second button (+) to choose any compiled script file.

◦ Or, drag a compiled script file from the Finder into the dialog.

The Relative To popup determines how you want Script Debugger to locate this library file in
future:

• Absolute means that the library file is sought in its current location.

• Document means that the library file is sought in the same location relative to the
current script. The current script must have been saved or this option won’t be
enabled. For example, you might start with the library file in the same folder as the

current script. Both files can then be moved, and as long as they are moved
together (so that they remain in the same folder), the library file will be found.

• Application Support means that the library is sought in the same location relative
to your Script Libraries folder. This is naturally the default when you use the
shortcuts described above for adding a library from your Script Libraries folder.

The way a file is listed to show its path in the Libraries dialog changes depending on your
choice in the Relative To popup. (If there isn’t enough room to see a full path, you can widen
the dialog.)

To examine or edit a library file:

• Choose File > Libraries and:

◦ Double-click the library file listing to open the file for editing.

◦ Option-double-click the library file listing to reveal the file in the Finder.

A script that uses Script Debugger’s library feature will run in other contexts — the library
resources are invisibly merged into the script when the script is saved, in a way that
AppleScript understands — but it cannot be edited except by Script Debugger. In order to
distribute to others a script which uses libraries, in a form that can be edited with any script
editor application, you will want to flatten the script. This means that the contents of all
library files on which the script depends are visibly incorporated into the contents of the
script itself.

To flatten a script:

• Choose File > Export > Flattened Script.

The Script Debugger Libraries mechanism may remind you of the AppleScript load script
command, but it has several advantages over load script:

• There is no need for your code to load anything, as Script Debugger does the
loading for you.

• With load script, the loaded material becomes a script object within your script,
whereas with Script Debugger’s library feature, the loaded material is blended with
your script.

• With load script, you have to specify or calculate a pathname in code, whereas
Script Debugger helps keep track of libraries for you.

Here is a further technical discussion about how the Libraries feature works.

Further Details:

Technical Details About Libraries

Description Manifest

Script Debugger Help > Opening and Saving Scripts > Library > Contents

Technical Details About Libraries

Here are some further technical details about how Script Debugger’s Libraries feature works.

How Libraries Are Attached to a Script

A library file (that is, a script that appears in your script’s Libraries dialog) is not dynamically
loaded every time you run your script. It is reloaded when Script Debugger compiles the
script (and when you open the Libraries dialog). These are the only times when Script
Debugger cares about where the library file is located on disk (a location that it derives in
accordance with your settings in the Relative To popup menu in the Libraries dialog).

The important implication here is this: The mere fact that you change the contents of a
library file does not mean that your compiled script that uses the library file will automatically
acquire the change. Rather, it is up to you to compile your script that uses the library, as a
way of causing any libraries it uses to be reloaded. Luckily, compilation happens any time
you alter your script and then run it; or, if your script hasn’t been altered and doesn’t need
compilation, you can force it to be compiled (and therefore to reload its library files) by
choosing Script > Recompile or by pressing the Recompile button in the script’s toolbar (hold
down the Option key to make it replace the Compile button).

Once loaded, a library is (invisibly) present as part of your compiled script. The resulting
compiled script file can be executed in any script runner environment. (But to edit it in
another script editing environment without flattening it first will probably cause the invisibly
present library to be stripped out.)

Duplicate Library Definitions

Unlike AppleScript’s load script command, top-level entities of a library file effectively
become top-level entities of your script. In theory, this means that their names can clash
with other top-level entities. For example, if a library file contains a top-level handler
howdy(), and if your script already has (or you eventually give it) a handler (or any other
top-level entity) named howdy, you’ve got two top-level things named howdy, and that’s
illegal.

Script Debugger helps you with this situation. If you try to compile a script where there’s a
name conflict between libraries or between a library and the main script, Script Debugger
puts up a dialog warning you of the problem (“The following duplicate library definitions have
been found”). You won’t be able to compile the script under these circumstances, unless you
click Continue in this dialog (in which case Script Debugger steps out of the way and lets
AppleScript deal with the duplication).

Such a name conflict includes the existence of two run handlers. In other words,
given that you have a library file (or more than one library file) plus the main script,
only one of those may contain top-level executable code, because such code
constitutes an implicit run handler, and you can’t have two run handlers in a script.

An Obscure Top-Level Entity Bug

There’s a bug in AppleScript that can cause a top-level entity in your main script to be
confused with a top-level entity in a library. For example, suppose your library file goes like
this:

property x : "hello"
on greet()

display dialog x
end greet

And suppose your main script goes like this:

property y : "goodbye"
greet()

When you then execute your script, the resulting dialog says “goodbye”, not “hello”, even
though greet refers to x (“hello”) and no code anywhere refers to y (“goodbye”). The
reason is that AppleScript has confused x with y.

A safe approach is this: if a script is to be used as a library file, wrap the whole script up in a
script object, like this:

script myLibrary
property x : "hello"
on greet()

display dialog x
end greet

end script

That way, when the library is loaded, what’s loaded is a single object — the script object. The
script object keeps the namespace clean, preventing name confusions. (In the example
above, the way to refer to x in your script would be as myLibrary's x, and the way to call
greet() in your script would be to say tell myLibrary to greet().)

Another solution is not to have a property declaration and a handler definition in the same
library file, thus avoiding the situation that triggers the bug.

Script Debugger Help > Opening and Saving Scripts > Contents

Manifest

It is the nature of AppleScript that if a scriptable application or scripting addition on which a
compiled script depends is missing, the script might not run, or could refuse to open for
reading and editing.

To help with this problem, Script Debugger can generate a manifest for your script - a list of
the scriptable applications and scripting additions on which it depends. That way, if you
intend to move the script to another machine or send it to another user, you’ll be forewarned
about the script’s dependencies.

To see a script’s dependencies:

• Choose File > Manifest. (You can also add a Manifest button to the script window’s
toolbar.)

The script’s dependencies are listed by category (Application Dependencies and Scripting
Addition Dependencies), along with commands that the script directs at each one. For
example, this script:

tell application "Finder" to beep

would list the Finder in the Application Dependencies category, and would list
StandardAdditions.osax in the Scripting Addition Dependencies category along with the beep
command. You can reveal a required application or scripting addition in the Finder. You can
also view its dictionary. If you select a command before pressing the Dictionary button, the
dictionary displays the information for that command.

A special situation can arise when a script depends on a scripting addition which is now
missing. The scripting addition’s terminology can’t be resolved during decompilation, so raw
Apple event codes appear, and AppleScript has no way to tell you what the trouble is or what
scripting addition is missing (because, unlike applications, scripting additions are not
explicitly targeted by name). To help with this problem, the manifest also lists Apple events
in your script that can’t be resolved (Unknown Apple Events). You can select such an
Apple event in the list and Script Debugger will search for the Apple event code in the online
database at www.osaxen.com in an attempt to identify the missing scripting addition.

(Another solution to this problem, if the script was last saved with Script Debugger,
might be to open the script as text; this will show the English-like terminology for
the missing command, which might help you work out what scripting addition it
comes from.)

The dialog also lets you export and save as a text file the information it presents, in either
XML (Save XML Report) or plain text format (Save Text Report).

Script Debugger cannot detect coercions provided by scripting additions. (For
example, Jon’s Commands can coerce a script object to text. If your script performs
such a coercion and you try to run it in the absence of Jon’s Commands, the script
will break, and Script Debugger won’t be able to help you figure out why.) That’s
because nothing can detect them. They do not involve any terminology and are not
documented in a scripting addition’s dictionary. This is an AppleScript flaw.

http://www.osaxen.com
http://www.seanet.com/~jonpugh/

Library

Script Debugger Help > Contents

Explore

The biggest challenge for the AppleScript programmer is figuring out what to say to a
scriptable application. Script Debugger gives you powerful tools for exploring a scriptable
application so that you can quickly write successful scripts targeting it.

• You can explore an application’s dictionary. Script Debugger helps you navigate and
search the dictionary, and lets you view dictionary information fully and clearly.

• You can explore a scriptable application’s objects in real time. While the application
is running, you can see the names and values of the attributes (elements and
properties) that it actually has at that moment — and if those attributes are objects,
you can see their attributes, and so forth. You can copy a reference to an attribute
into your script. You can even change a property value, without writing a script.

Further Details:

Dictionary
Explorer

Opening and Saving Scripts Develop

Script Debugger Help > Explore > Contents

Dictionary

One of Script Debugger’s most helpful features is its display of the dictionary of a
scriptable application.

Script Debugger makes it very easy for you:

• To open the dictionary of a scriptable application or scripting addition.

• To navigate the dictionary.

• To view the information in the dictionary in a variety of ways.

Further Details:

Open Dictionary
Dictionary Window
Dictionary Views

Explorer

Script Debugger Help > Explore > Dictionary > Contents

Open Dictionary

You can open an application’s dictionary in several different ways, depending on what you’re
doing and what’s convenient.

• There are various basic ways to open any application or scripting addition’s
dictionary.

• If an application is running, you can open its dictionary directly.

• If you’re editing a script that targets an application, you can open that
application’s dictionary directly.

• If you’ve already worked with an application, Script Debugger remembers this
fact, and you can open the dictionary from a list of previously used applications.

• If the dictionary you want to open is a special dictionary — it’s an installed
scripting addition, or it’s the AppleScript Studio dictionary, or it’s the dictionary of
AppleScript itself — you can open it directly.

You can open multiple windows on the same dictionary. Bring a dictionary window to
the front, and choose Dictionary > Open in New Window. This makes it easy to view different
pieces of information simultaneously, or to have both a dictionary and an explorer open for
the same application.

Note: In some cases, opening an application’s dictionary will require the application
to be running. If this is the case, and the application is not running, then when you
ask to open the application’s dictionary, Script Debugger will launch the application,
which may cause a delay. However, once Script Debugger has opened an
application’s dictionary, it caches the dictionary. Thus, having opened such an
application’s dictionary, you can now close the application and its dictionary and
later open its dictionary again and this time Script Debugger will not have to launch
the application.

Further Details:

Open Any Dictionary
Current Applications
Current Context
Known Applications
Scripting Additions

Dictionary Window

Script Debugger Help > Explore > Dictionary > Open Dictionary
> Contents

Open Any Dictionary

If an application is not running and you’ve never worked with it before, and if you are not
currently targeting it in a script, you can open its dictionary in the following ways:

• Choose File > Open. This brings up a dialog where you can choose anything. If what
you choose is an application or scripting addition, its dictionary will open.

• Choose File > Open Dictionary > Application. This brings up a dialog where you can
choose an application or scripting addition to open its dictionary.

• Locate the application or scripting addition in the Finder and drag its icon onto Script
Debugger’s icon (possibly onto Script Debugger’s icon in the Dock).

• Locate the application or scripting addition in the Finder and drag its icon onto a
Script Debugger script window. Script Debugger will put up a dialog asking what you
want to do. One of the options is to open the application’s dictionary.

Current Applications

Script Debugger Help > Explore > Dictionary > Open Dictionary
> Contents

Current Applications

If an application is running right now, you can quickly open its dictionary.

• Choose File > Open Dictionary. In the resulting hierarchical menu, you’ll see a list
headed “Running Scriptable Applications”. Choose an application from the menu,
and its dictionary will open.

• Alternatively, if what you want to open is the dictionary of the frontmost
application, use Script Debugger’s Dock menu. This contains an item, Open XXX
Dictionary, where “XXX” is the frontmost application. Choose it, and Script Debugger
will come to the front with that dictionary open.

Open Any Dictionary Current Context

Script Debugger Help > Explore > Dictionary > Open Dictionary
> Contents

Current Context

If you’re editing a script that contains a tell block targeting an application, you can
quickly open that application’s dictionary.

• Select anywhere inside the tell block targeting the application whose dictionary you
want to open. (This is to put your selection into the desired tell context.) Then
choose File > Open XXX Dictionary, where “XXX” will be the name of the application.
Alternatively, control-click to choose the same menu item from the contextual
menu.

Current Applications Known Applications

Script Debugger Help > Explore > Dictionary > Open Dictionary
> Contents

Known Applications

When you ask Script Debugger to work with an application, Script Debugger remembers this
fact and puts the application in a known applications list. You can open a known
application’s dictionary quickly:

• Choose File > Open Dictionary. In the hierarchical menu, you’ll see a set of menu
items entitled “Known Applications”. Choose an application to open its dictionary.

• Choose Window > Inspectors > Known Applications if necessary, to show the Known
Applications inspector. In the inspector window, double-click an application’s listing
(or select it and click the Dictionary button) to open its dictionary.

Current Context Scripting Additions

Script Debugger Help > Explore > Dictionary > Open Dictionary
> Contents

Scripting Additions

Certain special dictionaries can be opened directly in Script Debugger.

• To open the dictionary of an installed scripting addition, choose File > Open
Dictionary > Scripting Additions. (The keyboard shortcut for this command is likely
to become one of your most frequently used shortcuts.)

• To open the AppleScript Studio dictionary, choose File > Open Dictionary >
AppleScript Studio.

• To open AppleScript’s internal dictionary, choose File > Open Dictionary >
AppleScript.

AppleScript’s internal dictionary is the 'aeut' resource, contained in the
AppleScript component file. It can be helpful for explaining certain terminology
clashes, as it is the only way to learn what terms are defined by AppleScript. (For
example, why can’t you name a global variable “keystroke”? This dictionary tells
you.) Within this dictionary, only the AppleScript Suite, the Standard Suite, the Text
Suite, and the Type Names Suite are actually enabled. Even though you can see the
other suites, they are turned off and do not actively define any terminology (and
should be ignored).

Known Applications

Script Debugger Help > Explore > Dictionary > Contents

Dictionary Window

Meet Script Debugger’s dictionary display!

(The dictionary illustrated here is for a tiny scriptable application called Pairs,
especially written for test purposes. You don’t have this application, so don’t go
looking for it on your hard disk!)

Here are the parts of the dictionary window:

1. The toolbar.

2. The browser. Select in the browser to see the corresponding dictionary entry in the
info pane. (The browser is replaced with search results when you search the
dictionary.)

3. The info pane. It displays an entry or entries from the dictionary. To determine
what entry is displayed here, select in the browser (or in the results of a search).

4. The Format popup menu.

Further Details:

Browser
Dictionary Info Pane
Hierarchies and Diagrams
Search in Dictionary
Look Up Definition
Back and Forward
Miscellaneous Dictionary Actions

Open Dictionary Dictionary Views

Script Debugger Help > Explore > Dictionary > Dictionary
Window > Contents

Browser

The browser at the top of the dictionary window is the primary way of navigating the
dictionary.

Select in the browser to display the corresponding dictionary entry in the info pane.

In the above illustration, we have clicked the Suites entry in the first column so as
to pick a suite in the second column. In the second column, we have clicked the
Pairs Suite so as to pick a category in the third column. In the third column is the
actual selection, the Commands listing. This means that all commands in this suite
are listed in the info pane. (It also means that all commands in this suite are listed
in the fourth column. It so happens that this tiny suite has only one command.)

To select more than than one listing in a column, Shift-click to select a range of entries, or
Command-click to select multiple individual entries. Choose Edit > Select All to select all
entries in a column, thus displaying information for all of them in the info pane.

So, in the above illustration, you could Command-click Enumerations in the third
column. Both Commands and Enumerations in the third column would be selected,
and so all commands and enumerations in the Pairs Suite would be displayed in the
info pane.

You can also use arrow keys to navigate the browser, though it is probably more common to
use the mouse.

Here is a discussion of the various rows, columns, and icons you’ll see displayed in the
browser (and in search results).

Further Details:

Types of Entities Shown in the Dictionary Browser

Dictionary Info Pane

Script Debugger Help > Explore > Dictionary > Dictionary
Window > Browser > Contents

Types of Entities Shown in the
Dictionary Browser

This is a list of the various types of entities shown in the browser at the top of the dictionary
display, as well as in results from searching the dictionary (in the dictionary window or
through the Look Up Definition inspector).

Suite
A suite () is an artificial grouping of entities created by the developer of the
application’s scripting model. A suite can contain any other type of entity (except
another suite), and in most dictionaries, every dictionary entry is part of some suite.
At the same time, in Script Debugger’s display of the dictionary, all dictionary entries
are also accessible, starting in the first column, without using the Suites entry.

So, in the above illustration, we could have started with the Commands entry in the
first column to see the pair command listed in the second column and in the info
pane.

Command
A command is a verb, something that you tell an application or one of its objects to
do. The icon distinguishes between a function (), which returns a result, and a plain
command (), which does not. Command parameters are marked in a search result
by .

Event
An event () is a message sent by an application to your code. Your code can receive
this message through an event handler. For example, Folder Actions are implemented
through events. If you want something to happen when files are added to a folder, you
must implement a handler called adding folder items to, so that System
Events can call it by sending the corresponding event to your script.

Dictionaries do not always distinguish events from commands, so Script Debugger
will sometimes report events as commands. For example, most of the “commands”
listed in the AppleScript Studio dictionary are really events, but Script Debugger
has no way to know this.

Class
A class () is a datatype. A class can have attributes — properties () and elements.
Most of what you do in scripting an application involves working with properties and
elements. You get and set the values of properties, and you manipulate elements in
various ways (asking for particular elements or lists of elements, creating new
elements, deleting elements, and so forth).

Record
A record () is a sort of lightweight class, typically used only in communicating data
between an application and your script. Script Debugger distinguishes records from
classes only when the target application has an sdef-based dictionary (because only an
sdef-based dictionary can draw such a distinction).

Type
A type () is a built-in datatype, such as boolean or string. It is not always
obvious what the distinction is between a Type and a Class. In some contexts, the
difference is that a Class can have attributes (properties and elements), but some
dictionaries fail to draw this distinction consistently.

Enumeration
An enumeration () is a datatype whose value is always one of a predefined list of
constants (). For example, the saving parameter of the close command is either
the constant yes or the constant no or the constant ask. An enumeration’s constants
are called its enumerators.

In the dictionary info pane, each enumeration is listed, with its enumerators, on a
page of its own. A value type is shown as a hyperlink with the enumeration name.
Click this link to see the enumeration’s own page, listing its enumerator values. For
example, the saving parameter of the close command is listed as the saving
enumeration. Click that to see the saving enumeration on its own page, where the
enumerators yes, no, and ask are listed.

Scripting Addition
This category appears only in the Scripting Additions dictionary display. Script
Debugger collects the dictionaries of all installed scripting additions into a single
dictionary, so this category lets you browse an individual scripting addition. Individual
scripting additions are marked as to their location, namely the ScriptingAdditions
folder in the Library at the system (), computer (), user (), or network ()
level.

Summary of Symbols

in a folder Enumeration

in a circle Constant (Enumerator)

C in a circle Class

C in a hexagon Command

E in a hexagon Event

F in a hexagon Function (Command with result)

P in a square Parameter

Pr in a square Property

R in a circle Record

S in a folder Suite

T in a circle Type

! in a triangle PowerPC-only*

Mac OS X-style X System**

iMac display Computer**

Person silhouette User**

Network globe Network**

* The PowerPC-only icon appears when Script Debugger is running natively on an
Intel-based machine and a scripting addition is PowerPC only. It alerts you to the
fact that Intel-native AppleScript environments, including Script Debugger, will not
load this scripting addition. (But a Carbon applet, or any application that executes
AppleScript scripts and is not a universal binary and therefore runs under Rosetta,
will load such a scripting addition.)

** Scripting Addition icons reflect the location of the Library/ScriptingAdditions
folder containing the marked scripting addition file: /System, top level, the user’s
home folder, or the network, respectively.

Script Debugger Help > Explore > Dictionary > Dictionary
Window > Contents

Dictionary Info Pane

The info pane of the dictionary window displays the dictionary entry. Script Debugger’s
display of dictionary entries has these useful features:

• Completeness. Script Debugger displays all the information in a dictionary, where
other script editor applications may omit some information.

• Collapsibility. Each section of the dictionary info display is collapsible. For example,
in the first illustration below, if you click on the “minus” symbol () to the left of the
RESULT heading, the contents of the Result area are hidden. In a dictionary with
large sections, this can be a considerable space saver.

• Hyperlinking. Everything in blue with a dotted underline in a Script Debugger
dictionary is a link. You click this link to follow it. For example, in the first illustration
below, every time the person class is mentioned, it’s a link which you can click to
jump to the dictionary’s entry on the person class. If you’re in doubt about what
any linked word means, click on it! (There’s no penalty for doing so, as you can
always come back afterwards.)

Note: links with solid underlines are external (i.e. somewhere on the Internet) and
will be displayed in your web browser.

• Cross-Referencing. Script Debugger analyzes the dictionary, draws some
conclusions, and displays the resulting information. For example, at the bottom of
the first illustration below, Script Debugger tells you what classes can be the object
of the pair command. In the second illustration below, showing the alias entry
from BBEdit’s dictionary, Script Debugger tells you every command that takes an
alias as a parameter, and every class that has a property that’s an alias. Every
cross-reference is a hyperlink.

• Extra Information. Script Debugger provides extra information about built-in
AppleScript types. For example, in the second illustration below, alias is a built-in
AppleScript type. The Description section is extra information, coming not from the
dictionary of the application (BBEdit) but from Script Debugger itself. This extra
information is instructional and can be especially helpful to AppleScript beginners.

The above illustration shows the typical features of a command as displayed in Script
Debugger. The command’s syntax is demonstrated by a template (“Function Syntax”), which
you can insert into your script. The result and parameters are clearly shown. (Not illustrated
above: optional command parameters are displayed in grey.) Classes (person) and types
(boolean) are hyperlinks. Classes that can be the object of this command are cross-
referenced and hyperlinked.

The above illustration shows the typical features of a class as displayed in Script Debugger.
The class’s properties are clearly listed. Types (file, string) are hyperlinks. Commands
where this class is a parameter, and classes where this class is a property or element, are
cross-referenced and hyperlinked. This particular class is a built-in AppleScript type, so extra
information about the type is provided in the Description section.

The Find dialog works in the info pane, and can be a useful way to reach desired information
quickly.

Browser Hierarchies and Diagrams

Script Debugger Help > Explore > Dictionary > Dictionary
Window > Contents

Hierarchies and Diagrams

Classes in a dictionary can be understood as arranged in two hierarchies. To see them,
choose Dictionary > Show Diagram (or click Show diagram in the dictionary window’s
toolbar). The button at the top of the diagram drawer lets you choose between hierarchies —
the containment hierarchy or the inheritance hierarchy.

• The containment hierarchy reflects the fact that an object has attributes
(properties and elements), and an attribute can be another object. Thus, in theory,
it should be possible to start at the “top” of the hierarchy (which is usually the single
instance of the application class) and describe the relationships between classes
as a tree. This tree is sometimes referred to as the application’s object model. The
containment hierarchy expresses a “has-a” relationship among classes.

• The inheritance hierarchy is an artifice originally introduced as a way of making
dictionaries shorter. For example, in the Finder, folder and disk are two different
classes, but they have many properties and elements in common. For instance, they
both have an entire contents property saying what’s in them, and they can
both have folder elements and file elements reflecting the hierarchy of items on
disk. Thus it saves space, and makes conceptual sense as well, to separate out the
entire contents property and the folder elements and file elements, along
with all the other attributes shared by folders and disks, and express them as a
separate class (here called container). The folder class and the disk class are
then said to inherit from the container class, so that they share these properties and
elements by virtue of this inheritance. The inheritance hierarchy expresses an “is-a”
relationship among classes.

Script Debugger’s dictionary display can flatten the display of inherited attributes in
the info pane. Click here to read more about this feature.

The above illustration (showing BBEdit’s containment hierarchy) is typical of what you’ll see
in the diagram drawer. You can do three things here:

• Click any class’s name in the diagram to see the information for that class
displayed in the info pane. Thus, the diagram drawer is an additional way to
navigate the dictionary.

• Click the + or - button at the right end of any class’s name, to expand or collapse
the hierarchy shown in the diagram from that point.

• Choose from the popup menu at the bottom of the drawer, to change the root of
the diagram. Here, the application class is the root of the diagram, but you can
change this to any class that has attributes. This is convenient as a way of “hoisting”
part of the diagram, and is also valuable in the case of defective dictionaries, where
the object model is faulty and fails to form a single coherent hierarchy.

Dictionary Info Pane Search in Dictionary

Script Debugger Help > Explore > Dictionary > Dictionary
Window > Contents

Search in Dictionary

To search a dictionary:

• In the dictionary window, show the toolbar (if it isn’t showing already) and use the
Search field. Type a term to search for in the Search field, and press Return to
initiate the search.

The popup menu at the left end of the Search field (the icon looks like a magnifying glass)
determines what categories of entity to search in, as well as what parts of each entity’s
info to search in. (For example, you might find it useful to disable searching in a Description,
since this can lead to false positives.) The popup menu also remembers recent searches.

You are doing a literal search. If the text you type is found anywhere within the material
being searched, you have a hit. For example, if your search includes entity names, searching
on “lect” will find a class that has an attribute called “selection”.

Search results are displayed in place of the browser at the top of the dictionary window.
Results are grouped alphabetically into relevance rankings. (Above is shown the result of
searching for “desktop” in the Finder’s dictionary.) Click a listing to display it in the info pane.
Thus, searching is another way to navigate the dictionary.

[You might wish to see a list of the types of entity you can find here, and the meanings of
the icons.]

To remove search results and restore the browser at the top of the dictionary window:

• Click the X icon at the right end of the Search field (or click in the Search field and
press the Esc key).

Another way to search the dictionary is through the Look Up Definition feature.

Hierarchies and Diagrams Look Up Definition

Script Debugger Help > Explore > Dictionary > Dictionary
Window > Contents

Look Up Definition

You can search a dictionary without being in that dictionary, either from within the script
you’re working on, or from an inspector window.

• To search the dictionary from the Look Up Definition inspector, first make sure the
inspector is showing (if not, choose Window > Inspectors > Look Up Definition). The
search field here is just like the Search field in the dictionary window toolbar. In
particular, it has the same popup menu at the left end, with the same options
determining what aspects of the dictionary to search. It also has five additional
options (at the top of the menu) determining what dictionary to search:

◦ You can choose whether to include scripting additions in your search.

◦ You can choose whether to include AppleScript’s own internal dictionary in
the search. (This option is good for helping to track down terminology
clashes.)

◦ You can choose whether to search the tell context application. This is the
application being targeted at the selection point in the frontmost script
window.

◦ You can choose whether to search scriptable running applications.

◦ You can choose whether to search all applications in the known applications
list.

Searching the known applications list can be time-consuming the first time that you
do it, because dictionaries must be loaded and applications may have to be
launched. But it will be fast after that because the dictionary is cached. When you
start to search known applications, a dialog will appear warning you of any
applications that must be launched in order to load their dictionaries, giving you a
chance to prevent any or all of these applications from launching (in which case
their dictionaries will not be searched or cached).

• To search a dictionary from within a script window, select a term in the script’s text,
and choose Search > Look Up Definition. (Alternatively, choose Look Up Definition
from the script window’s contextual menu.) This enters the selection into the Look
Up Definition inspector and performs the search. The settings already present in the
Look Up Definition inspector search field popup menu will apply to this search.

[You might wish to see a list of the types of entity you can find here, and the meanings of
the icons.]

The Look Up Definition inspector cannot be widened, so the entire content of a result usually
cannot be displayed. To see the full content of a result, hover the mouse over the result; a
tooltip will appear, showing the full result.

Having performed a search in the Look Up Definition inspector, and having obtained results,
to display a result in its dictionary:

• Double-click the result.

Search in Dictionary Back and Forward

Script Debugger Help > Explore > Dictionary > Dictionary
Window > Contents

Back and Forward

The dictionary display remembers everything displayed in the info pane. It’s as if each
display in the info pane were a web page. As in a web browser, you can go back to
previously viewed “pages”, and then forward again. To do so:

• Choose Dictionary > Back or Dictionary > Forward (or use the convenient keyboard
shortcuts). Alternatively, use the Back/Forward buttons in the dictionary window’s
toolbar.

Look Up Definition Miscellaneous Dictionary Actions

Script Debugger Help > Explore > Dictionary > Dictionary
Window > Contents

Miscellaneous Dictionary Actions

This page discusses some miscellaneous actions that you can perform in a dictionary window.

• Quit. If the application whose dictionary you are looking at is running, you can
make it quit. Use the Quit button in the dictionary window toolbar, or choose
Dictionary > Quit XXX, where “XXX” is the name of the application.

If you do this in the Finder’s dictionary, you’ll get a warning dialog, since quitting
the Finder is not something one usually wants to do. If you do quit the Finder, you
can relaunch it by clicking the Launch button.

• Launch or Activate. You can start up the application whose dictionary you are
looking at, or, if it’s already running, you can bring it to the front. Use the Launch or
Activate button in the dictionary window toolbar (they are the same button), or
choose Dictionary > Launch XXX or Dictionary > Activate XXX (they are the same
menu item), where “XXX” is the name of the application.

• Paste Tell. You can insert a tell block into your script, targeting the application
whose dictionary you are currently looking at. Use the Paste Tell button in the
dictionary window toolbar, or choose Dictionary > Paste Tell. If you hold down the
Option key, or if no script window is open, a new script window is created and the
tell block is inserted. Otherwise, the tell block is inserted at the current insertion
point or wrapping the selection in the frontmost script window. Your existing code
will not be overwritten.

If what you’re looking at in the dictionary is a command, a template for giving that
command will be inserted as well. If what you’re looking at in the dictionary is an
event, a template for an event handler for receiving that event will be inserted.

There are other ways to issue a Paste Tell command.

If you alter the contents of your ScriptingAdditions folder while you have the Scripting
Additions dictionary window open — or if you’re a developer writing a scriptable application,
and you alter that application’s dictionary while you have the application’s dictionary window
open — a Caution icon () will appear in the dictionary window title bar. Click it, and you’ll
get a dialog prompting you to reload the application’s dictionary.

Back and Forward

Script Debugger Help > Explore > Dictionary > Contents

Dictionary Views

Several menu items allow you to change aspects of the information display in a dictionary.

• You can change the size of the text.

• You can set whether a class’s information should include properties and elements
inherited from its superclass.

• You can set whether to display extra documentation supplied by dictionary authors,
as well as Late Night Software’s own explanations of AppleScript’s built-in classes.

• You can set whether to reveal the raw Apple event codes for dictionary terms.

• You can reveal the raw XML underlying Script Debugger’s display of the dictionary
information.

These settings apply to the current dictionary window, not to all dictionary windows, and they
are persistent (that is, they are remembered the next time you open the same dictionary
window).

Further Details:

Size
Inheritance
Extra Documentation
Apple Event Codes
Dictionary Format

Dictionary Window

Script Debugger Help > Explore > Dictionary > Dictionary
Views > Contents

Size

You can change the size of the text in the dictionary display. To do so:

• Choose Dictionary > Larger Text or Dictionary > Smaller Text, possibly several
times until you get a suitable text size. (You can also add a Text Size button to the
dictionary window’s toolbar.)

Inheritance

Script Debugger Help > Explore > Dictionary > Dictionary
Views > Contents

Inheritance

Script Debugger’s dictionary display can flatten the display of inherited attributes in the info
pane. So, for example, looking at info for the Finder’s folder class shows you the info for
the container class (because folder inherits from container) and the item class as
well (because container inherits from item).

To flatten the display of inherited attributes:

• Choose the Dictionary > Show Inherited Properties and Dictionary > Show Inherited
Elements menu items. If these menu items are checked, the display of inherited
attributes is being flattened.

There is a different sort of dictionary flattening, which Script Debugger performs
automatically. In some dictionaries, an entry is repeated multiple times. For
example, the information about the application class might be distributed over
two entries, each in a different suite. (So, for example, in TextEdit’s dictionary,
some application class information is in the Standard Suite, some of it is in the
TextEdit Suite.) In this case, Script Debugger will display the entry in its multiple
locations, but in both places it combines the information from both entries. Thus, no
matter which instance of the entry you look at, you will see all the information
about that entry.

Size Extra Documentation

Script Debugger Help > Explore > Dictionary > Dictionary
Views > Contents

Extra Documentation

The sdef dictionary format (introduced in Tiger, Mac OS X 10.4) allows entries in the
dictionary to be more extensive than previously. Besides a mere comment, dictionary authors
can now include multiple formatted paragraphs of explanation.

Technically, such information appears in <documentation> tags in the XML that
constitutes the sdef dictionary.

You can toggle the display of extended explanatory material. To do so:

• Choose Dictionary > Show Extra Documentation. If the menu item is checked, the
extended explanatory material is being displayed.

Script Debugger itself also includes supplementary dictionary information that is “injected”
into the dictionary display, such as the Description of the alias datatype shown here. This
supplementary information is instructional and can be especially helpful to AppleScript
beginners.

Inheritance Apple Event Codes

Script Debugger Help > Explore > Dictionary > Dictionary
Views > Contents

Apple Event Codes

From AppleScript’s point of view, the purpose of the dictionary is to translate between the
English-like terminology seen by you, the human programmer, and the raw codes used to
construct Apple events. The dictionary display can show you these raw Apple event codes.
This can be useful when you want to analyze a raw Apple event (as displayed in the Apple
Event Log window, for instance), or when you need to track down a terminology clash.

To toggle the visibility of raw Apple event codes:

• Choose View > Show Raw (Chevron) Syntax. If the menu item is checked, Apple
event codes are showing.

You can also see raw Apple event codes in scripts and the Apple Event Log window.

Extra Documentation Dictionary Format

Script Debugger Help > Explore > Dictionary > Dictionary
Views > Contents

Dictionary Format

The Format popup menu above the info pane of the dictionary window changes the form in
which the information is shown. By default, there are two choices here, “AppleScript” and
“sdef Outline”.

Script Debugger’s dictionary display is generated from some XML created behind the scenes.
This XML is in a sense the “real” contents of the dictionary. The AppleScript setting in the
Format popup menu transforms this XML into a nice layout for convenient viewing. The other
choice, “sdef Outline”, permits you to view the original XML. The XML presentation has
syntax coloring and code folding (meaning you can click on a minus-sign or plus-sign at the
left of a line to collapse or expand everything hierarchically below that line).

Users are free to add other transformations. Such additional transformations are
installed in ~/Application Support/Script Debugger 4.5/Dictionary Stylesheets and
will then appear in the Format popup menu.

Apple Event Codes

Script Debugger Help > Explore > Contents

Explorer

Meet Script Debugger’s Explorer!

The explorer lets you probe the objects of a running scriptable application, in real time. You
can easily discover an application’s object model, insert object references into your scripts,
and see the values of object properties — and even change those values.

To see a dictionary window’s explorer:

• Open a dictionary window and choose Dictionary > Explorer View (or click the
Explorer button in the toolbar).

You can open multiple windows on the same dictionary. Bring a dictionary
window to the front, and choose Dictionary > Open in New Window. This makes it
easy to view different pieces of information simultaneously, or to have both a
dictionary and an explorer open for the same application.

The illustration above shows iTunes’s dictionary explorer, as it appears on my machine. Its
parts are:

1. The toolbar.

2. The info pane. This area is where you see the information about a running
application. It is an explorer view. (Explorer views appear in several other places in
Script Debugger’s interface.)

Read on, to learn about:

• What’s shown in an explorer view.

• Things you can do in an explorer view.

• How to open part of an explorer view as a separate window.

Note: A more focussed way to probe an application’s objects is the Tell Context inspector. It
watches where you are working in a script window and probes the attributes of the current
tell target.

Further Details:

Explorer View
Explorer Details

Dictionary

Script Debugger Help > Explore > Explorer > Contents

Explorer View

Explorer views appear in many places in Script Debugger’s interface. For example:

• The Explorer pane of a dictionary window.

• The Tell Context inspector.

• The variables pane and expressions pane of a script window’s result drawer.

• Best view in a viewer pane or window, such as:

◦ The result pane of a script window’s result drawer (or separate result
window).

◦ An error dialog.

◦ A separate viewer window generated from any explorer view.

This page describes what is shown in in an explorer view. A further page discusses what
you can do in an explorer view.

An explorer view is an outline, a hierarchy. To expand or contract the hierarchy beneath a
line:

• Click that line’s disclosure triangle (or select that line and press the Right Arrow or
Left Arrow key).

Here are the kinds of things shown in an explorer view:

• Element collections are shown in bold with plural names and disclosure triangles.
The “value” displays the element count. Expand an element collection to see the
individual elements in the collection. Each individual element’s “value” is a reference
to that element (along with information about its name, if available). In the
illustration above (from the iTunes explorer), the user has opened the application’s
sources collection, revealing source 1 (whose name is “Library”), and from
there has drilled on down through the element hierarchy to reveal file track 1 of
playlist 6 of source 1. The sources, playlists, and file tracks entries are
all element collections.

• Objects are shown with disclosure triangles as well. The “value” is a reference to
the object, as returned by the application, and is badged with the application’s icon
(to indicate that it’s an object belonging to that application). Expand the object
reference to see the object’s elements and properties. Above, the user has opened
file track 1 of playlist 6 of source 1, revealing its artworks elements collection, its
album property, and so forth.

• Lists and Records are shown with disclosure triangles too. The “value” displays the
item count (but a Dictionary preference can change this). Expand the entry to see
the individual items of the list or record. Below is a picture showing an example
(from the Finder’s explorer).

• Script Objects are shown with disclosure triangles too. (A common place to see
this is in the variables pane.) Expand a script object’s listing to see its script
properties and its top-level script objects. The illustration below is from a script
containing a property x and a script object ss, which itself has a property x and a
script property sss, which also has a property x.

• Other datatypes are shown as individual lines without triangles. The value is
shown as AppleScript would display it. So, in the above illustration of iTunes’s
explorer, the album property of this object (file track 1 of playlist 6 of source 1) is a
string, “Stokes Eastern Birds”.

Actually, the album property is Unicode text, and Script Debugger lets you know this with
the “UTF XVI” badge that appears next to it. Text badges you may see are:

Unicode text (UTF-16) [Common]

UTF-8 [Rare]

Styled text [Rare]

International text [Rare]

Also, if a value is a valid file reference, it is badged with the icon of the corresponding item
on disk.

Read on to learn what else you can do in an explorer, and how to generate separate viewer
windows so you can focus on the details of particular values.

Explorer Details

Script Debugger Help > Explore > Explorer > Contents

Explorer Details

Here are details about things you can do in an explorer view.

• Move a listing into a script. Individual lines of an explorer can be copied or
dragged into a script. (Drag from the first column.) In a dictionary’s explorer, an
alternative is to choose Dictionary > Paste Tell (or use the Paste Tell button in the
toolbar). If what you copy into your script in this way is an object reference, it will
be conveniently wrapped in a tell block if necessary.

You can also copy from the Value column. For example, instead of “album of file
track 1 of playlist 6 of source 1”, you might like to paste “Stokes Eastern Birds” into
your script. To do so, use the contextual menu and choose Copy Value, or hold Shift
and choose Edit > Copy. Then paste wherever you want the value to go.

• Change a value. A value is writeable, and can be changed, unless it is badged with
the crossed-out pencil icon () indicating that it is not writeable. Select the desired
line and press Return (or Enter), or choose Edit Value from the contextual menu.
The entry in the Value column will become editable, and you can change it. When
you’re done, press Enter to set your change, or press Esc to cancel and leave the
value untouched. Be careful! If what you are exploring is an object belonging to an
external application, you are changing the actual value of an actual property of an
actual object in the actual application! In the illustration above, the album property
is an example.

• Change an enumerated value. If a value has little up-and-down arrows () to its
left, it’s an editable enumeration. The arrows are a popup menu, and you can click

them to get the menu and change the value (or see what the other possibilities are).
In the illustration below, the shuffle and song repeat properties are examples.

• Change an element specifier. Element collections have little up-and-down arrows
() at the right end of the left column. These allow you to change the element
specifier used to gather the collection. By default, we get every whatever-it-is (for
example, the list of sources was gathered by asking for every source). With
the popup menu, you can get a different range or an individual element. The screen
shot below shows how you can change from every source to the particular
source named “Library”.

• Get a class definition. To learn more about a class (as opposed to an object), use
the contextual menu and choose Show Definition. For example, if I control-click on
the sources line, in the illustration above, and choose Show Definition, the window
switches to Dictionary view with the source class selected.

• Refresh the explorer. An explorer is not live all the time. Information is gathered
when you initially open the explorer and when you expand a triangle. If the situation
in the target application changes, the explorer view information will need refreshing.
To refresh it, select a line and choose Dictionary > Reload (or choose Reload from a
line’s contextual menu). That line, and everything exposed that’s hierarchically
deeper, will be gathered afresh. (To refresh the whole window, hold down the Option
key as you choose Dictionary > Reload. But be careful, since Script Debugger may
have to ask the target application for a lot of information.)

• Generate a separate viewer window. To focus in on a particular entity, double-
click it. (Alternatively, select the entity and control-click it, and in the contextual
menu, choose Open Viewer.) This creates a new viewer window showing the entity’s
value.

You might wish to generate a separate viewer window simply because it is a better way to
view information that you are particularly interested in. For instance, if it is an object, Best
View in the viewer window is itself an explorer view, so you can see that object by itself
without the other contents of the main explorer — and then you might generate yet another
separate viewer window focusing even more tightly. If a value is a native datatype, the
display in the viewer window may be easier to read (for example, in the case of a long

string). The illustration below shows a cascade of viewer windows. From the Finder explorer,
we separate off the selection in its own window; from that window, we separate off item
1 of selection in its own window; from that window, we separate off creation date
of item 1 of selection in its own window.

Another reason for opening a separate viewer window is that sometimes it shows the
information better than the original explorer view does. For example, in the Finder’s explorer,
the selection object is a list. You can expand this list’s entry to see its items, as shown in
the illustration below:

…but if you expand one of those items in the explorer, you do not see the elements and
properties of that object. Instead, you see a lot of error messages. The reason is that we’re
asking the Finder for things like bounds of item 1 of selection, and the Finder
chokes on this sort of expression. The solution is to double-click the selection line,
opening a separate viewer window. Here, the items and their elements and properties are
fully displayed. The reason is that we’ve already fetched the selection, so in this window
we’re asking the Finder for bounds of item 1 of (get selection), which works.

In general, don’t be perturbed by error messages in an explorer. These are marked
in orange, with a stop-sign icon, as in the illustration below (CSS palette, from
BBEdit’s explorer), and they indicate that Script Debugger asked for an element or
property and the application responded, in good order, with a runtime error.

An error message, or a missing value result, are valid responses from the
application. An «empty» value (as in container in the above illustration) is
supplied by Script Debugger to indicate that the application has failed to return any
value at all. This is useful information because if you assign such a non-value to a
variable in a script, that variable will be undefined (try telling BBEdit to set x to
container and then displaying x and you’ll see what this means).

Explorer View

Script Debugger Help > Contents

Develop

Script Debugger gives you powerful, unique tools to help you develop your AppleScript code.
From a short one-off script to a complicated program, you’ll easily and quickly create code
that works.

You can think of the AppleScript development cycle in three stages:

Edit your code.
Enter code, view it, navigate it, search it, modify it.

Run your code.
Compile code, execute it, time it, get the result, and log Apple event communication
between your code and scriptable applications.

Debug your code.
Step through code, set breakpoints, watch values change as your code progresses.
Understand what your code does, line by line!

Further Details:

Edit
Run
Debug

Explore Reference

Script Debugger Help > Develop > Contents

Edit

Script Debugger is a dedicated editor for AppleScript programs. It’s designed to make it as
easy as possible for you to edit your AppleScript code.

• Get to know the script window.

• Learn about editing and navigating in the script window.

Further Details:

Script Window
Editing and Navigation

Run

Script Debugger Help > Develop > Edit > Contents

Script Window

Meet Script Debugger’s script window environment! This is where you will read, edit, run,
and debug your scripts.

1. Toolbar

2. Language popup

3. Navigation bar and “table of contents” popup

4. Split and wrap icons

5. Text area. This is where you edit the script. You can alter your view of the script’s
contents.

6. Gutter (the column at the left edge of the window). Information appears here, such
as error marks, line numbers, and (when debugging) breakpoints and code coverage
marks.

The script window appearance is configurable, so you might want to save a certain size,
shape, position, and appearance as the default, so that whenever you create a new script, it
has the look that you prefer.

Information about opening and saving scripts is here.

Further Details:

Toolbar
View
Language
Default Script Size and State

Editing and Navigation

Script Debugger Help > Develop > Edit > Script Window > Contents

Toolbar

The toolbar at the top of a window contains controls relevant to the functionality of that
window. So:

• The toolbar at the top of a script window contains controls for running and
debugging your script.

• The toolbar at the top of a dictionary window contains controls for switching
between dictionary view and explorer view, for reloading the selected entry, for
activating or quitting the target application, and so on.

• The toolbar at the top of the Apple Event Log window contains controls for
determining what is logged and in what format, and can contain controls for running
the corresponding script.

In general, the functionality in a toolbar is available also from menus, so feel free to
hide the toolbar if you want to conserve screen space. However, some toolbar
controls are not available elsewhere. For example, the Search field in the dictionary
window toolbar has no exact parallel elsewhere in the interface.

To show or hide a toolbar:

• Choose View > Show Toolbar or View > Hide Toolbar (it’s the same menu item).
Alternatively, click the “lozenge” (oblong) button at the right end of the title bar.

To customize a toolbar:

• Choose View > Customize Toolbar. This brings up the Customize Toolbar dialog,
where you can determine what controls appear in the toolbar, as well as setting the
icon style and size. Alternatively, control-click in the toolbar icon area to bring up
the contextual menu that lets you do the same things. Even without the Customize
Toolbar dialog, you can Command-drag an icon in a toolbar to change its position or
remove it from the toolbar. Your changes apply (immediately) to the toolbars of all
windows of the same type. Thus, customizing the toolbar of a script window
customizes the toolbars of all script windows, and customizing the toolbar of a
dictionary window customizes the toolbars of all dictionary windows.

View

Script Debugger Help > Develop > Edit > Script Window > Contents

View

Script Debugger provides many options for helping you view script window contents.

Besides choosing whether to wrap long lines, you can also show or hide invisible characters
and spaces, see line numbers and tab stops, and even view your script’s raw Apple event
codes.

Many of these options apply in other contexts as well, such as viewers.

Further Details:

Line Wrapping
Invisibles
Spaces
Line Numbers
Tab Stops
Raw (Chevron) Syntax

Toolbar Language

Script Debugger Help > Develop > Edit > Script Window > View
> Contents

Line Wrapping

Script Debugger lets you choose between wrapping long lines automatically and letting long
lines extend to the right. To toggle line wrapping:

• Click the wrap icon (at the top of the vertical scroll bar), or choose View > Wrap
Lines. If the menu item is checked, line wrapping is turned on (). If not, line
wrapping is turned off (), and long lines will extend to the right and a horizontal
scroll bar will appear if necessary.

Each setting has its merits. AppleScript is a line-based language, so when you’re viewing
AppleScript code it can be nice to let long lines extend to the right, so that “a line is a line is
a line”. On the other hand, scrolling horizontally to see long lines is troublesome, and
wrapping solves the problem nicely.

Invisibles

Script Debugger Help > Develop > Edit > Script Window > View
> Contents

Invisibles

Script Debugger lets you see invisible text characters, such as tabs and return characters. To
see invisible characters:

• Choose View > Show Invisibles. If the menu item is checked, invisibles are showing.

This is particularly useful for viewing string literals. AppleScript has an annoying habit of
turning whitespace literals into literal whitespace, which conceals what they are. For
example, this script:

set s to "\t\r\n"

compiles like this:

set s to "
"

Thanks a lot, AppleScript! Now you’ve no idea what that string consists of. But with Script
Debugger’s Show Invisibles feature, you can instantly find out.

This is particularly useful, as in the above example, with line endings, which can
present a complicating factor in AppleScript, as explained here.

Line Wrapping Spaces

Script Debugger Help > Develop > Edit > Script Window > View
> Contents

Spaces

Script Debugger can show space characters in text. They are shown as small dots. To show
space characters:

• You must first be showing invisible characters. Now choose View > Show Spaces. If
the menu item is checked (and invisibles are showing), spaces are showing.

Invisibles Line Numbers

Script Debugger Help > Develop > Edit > Script Window > View
> Contents

Line Numbers

Script Debugger can show your script with line numbers in the margin. To toggle the
visibility of line numbers:

• Choose View > Show Line Numbers. If the menu item is checked, line numbers are
showing.

This can be useful for informational purposes, and for helping you gauge the size of your
script. It is also helpful for navigation. The navigation bar also shows line numbers, and you
can jump to a line by its number.

Spaces Tab Stops

Script Debugger Help > Develop > Edit > Script Window > View
> Contents

Tab Stops

Script Debugger can show tab stops in text, the horizontal points at which indentation
automatically occurs when a script is compiled or when a value is pretty-printed. The
positions of the tab stops are shown by faint vertical stripes behind your text. To show tab
stops:

• Choose View > Show Tab Stops. If the menu item is checked, tab stops are
showing.

Line Numbers Raw (Chevron) Syntax

Script Debugger Help > Develop > Edit > Script Window > View
> Contents

Raw (Chevron) Syntax

Script Debugger lets you view, in a script window, the raw Apple event codes that constitute
a compiled script. This can help explain terminology clashes and other unexpected
AppleScript phenomena, and can give you a deeper understanding of the Apple events that
your script is constructing and sending. To view raw Apple event codes:

• Choose View > Show Raw (Chevron) Syntax. If the menu item is checked, raw
Apple event codes are showing.

You can also see raw Apple event codes in the dictionary and the Apple Event Log
window.

Tab Stops

Script Debugger Help > Develop > Edit > Script Window > Contents

Language

The language popup, at the left above the text area in the script window, determines the
OSA (Open Scripting Architecture) language that the script will use.

Mac OS X provides one OSA language — AppleScript. Script Debugger supplies another OSA
language:

• AppleScript Debugger X. This is the special version of AppleScript that
implements Script Debugger’s debugging features. Whenever debugging mode is
turned on, this popup will be set to AppleScript Debugger X.

Additionally, Late Night Software distributes the JavaScript OSA component, which makes
JavaScript an OSA language (and gives it the ability to send and receive Apple events).

View Default Script Size and State

http://developer.apple.com/documentation/AppleScript/Conceptual/AppleScriptX/Concepts/osa.html
http://www.latenightsw.com/freeware/JavaScriptOSA/index.html

Script Debugger Help > Develop > Edit > Script Window > Contents

Default Script Size and State

The appearance of a new empty script window is up to you. To set the appearance of new
script windows:

1. Create a new script window and set it up the way you want it — size, language, view
options, open or closed state of the result drawer, as well as (if you wish) contents,
description, libraries, and expressions. Also, if you like, open the Apple Event Log
and set up its view and mode settings as you prefer them. Then:

2. Choose Window > Set Default Script Size & State.

A dialog appears, telling you what features your script window has, and giving you a chance
to decline to save any of them (except the size and state, which are always saved) as part of
the default script window setup.

From now on, new script windows (and their corresponding Apple Event Log tabs) will have
these same characteristics.

To open a new script window that ignores your saved defaults (without destroying those
defaults):

• Hold down the Option key and choose File > New Script (No Defaults).

To revert to Script Debugger’s default appearance for new windows:

• Choose Window > Reset Default Script Size & State.

Setting the default script appearance causes the model script window to be
compiled and saved (in ~/Library/Preferences/Script Debugger Preferences). Script
Debugger opens a copy of this saved file as your new window from then on. (This
fact may cause your model window to become “dirty” when you set it as the
default, because it was compiled and therefore changed internally even if it contains
no code.) Resetting the default script size and state throws away this saved model
window.

Language

Script Debugger Help > Develop > Edit > Contents

Editing and Navigation

Script Debugger provides tools to make editing and navigating your script as fast and
effortless as possible.

Editing

Script Debugger helps you create, view, and select block structure and delimiter pairs.

Script Debugger helps you type. It completes AppleScript terms for you, plus you can define
your own text substitutions. And there are other miscellaneous helpful typing and selection
features.

You can easily insert a tell block, or any common control structure or other boilerplate, into
your script. You can also insert content from the Finder or a Dictionary or Explorer window to
save typing.

You can paste a string literal, shift indentation levels, add or remove comments, and
interchange tab and space characters.

If all of that isn’t enough, you can edit your script with an external editor.

Navigation

Script Debugger has powerful find-and-replace features.

You can split a script window’s editing area, so as to view and edit multiple regions of your
script simultaneously.

You can jump to a line by number, or navigate to a section of code within your script by
means of the table of contents menu.

Further Details:

Block Structure
Delimiters
Text Completion
Text Substitution
Miscellaneous Typing and Selection
Tell
Clippings
Inserting Content
Shift
Comment
Tab
Splitting the Editor

Find
Go To
Navigate
External Editor

Script Window

Script Debugger Help > Develop > Edit > Editing and
Navigation > Contents

Block Structure

A pervasive and characteristic feature of AppleScript code is its block structure — a tell line
is balanced by an end tell line, a repeat line is balanced by an end repeat line, and
so forth. Script Debugger makes it easy to create, view, and check your code’s block
structure.

Block Entry (Auto-Closing)

Auto-closing is a text entry feature where, when you type Return in the opening line of a
block, Script Debugger automatically creates the closing line of the block for you.

Auto-closing is turned on through an Editor preference:

• Auto-close AppleScript blocks (end tell, etc.). If checked, auto-closing is turned
on.

To test auto-closing, create a new script and type repeat. Now press Return. Script
Debugger creates a corresponding end line and positions the insertion point in between, like
this:

repeat
-- your insertion point is at the start of this line

end

Now you’re ready to type the content of the repeat block. This works also for lines beginning
with tell, on, script, if, try, using, considering, and ignoring. Script
Debugger’s auto-closing feature is intelligent; if there is already a corresponding end line,
Script Debugger won’t create one.

To reverse your auto-closing preference setting momentarily, hold down the Control
key as you type Return. Thus, for example, if auto-closing is turned off and you
type Control-Return in a block opening line, Script Debugger behaves as if auto-
closing were turned on and creates a corresponding end line. If auto-closing is
turned on and you type Control-Return in a block opening line, Script Debugger
enters a return character and no more.

Block Viewing and Selection

To clarify the block structure of your script visually, you can hover the mouse in the gutter
(the area to the left of the script text). Script Debugger outlines the nested block structure,
starting with the block to the right of the mouse, in successively darker shades of grey.

This feature is turned on through an Editor preference:

• Highlight block when mouse hovers in gutter. If checked, this feature is turned
on.

When this feature is turned on, you can also select a block. To do so, click the mouse in the
gutter when you see the nested block structure outlined. If you click several times in rapid
succession, then each click selects the next block outwards. For example, in the above
illustration, clicking once would select the repeat block; clicking twice would select the on
pad block; clicking three times would select the script block; clicking four times would
select the outermost on block.

Block Selection (Balance)

Another way to select a block is to use Script Debugger’s Balance command. To do so,
choose Edit > Balance.

Each time you choose Edit > Balance, Script Debugger selects the block enclosing the current
selection. Thus, if you choose Edit > Balance repeatedly, you select the block enclosing the
insertion point, then the block enclosing that block, then the block enclosing that block, and
so on.

(The Balance command starts by selecting delimited code, if the initial selection is between
delimiters.)

Delimiters

Script Debugger Help > Develop > Edit > Editing and
Navigation > Contents

Delimiters

Script Debugger provides features that help you enter, view, and select pairs of delimiters.
Such delimiters are opening and closing double-quotes, parentheses, square brackets, and
curly braces (and, much rarer, chevrons).

Delimiter Entry (Auto-Pairing)

Auto-pairing is a text entry feature where, when you type the first of a pair of delimiters,
Script Debugger automatically enters the second of the pair for you.

Auto-pairing is turned on through an Editor preference:

• Auto-pair delimiters ([{""}]). If checked, auto-pairing is turned on.

To test auto-pairing, make a new script and type a quotation mark. A second quotation mark
is created for you, and the insertion point is positioned between them, ready for you to type
the contents of a literal string.

Auto-pairing is intelligent. When you have finished typing the contents of the string, so that
your insertion point is positioned up against the closing quotation mark, like this…

…try typing a quotation mark. Script Debugger does not enter a new closing quotation mark;
it understands that the closing quotation mark you are typing is the one that already exists,
and it behaves as if you had just typed that quotation mark, moving the insertion point
beyond it.

Another convenient feature of auto-pairing is its behavior when text is selected. Normally, if
text is selected and you type a key, the character entered by that key replaces the selected
text. But if auto-pairing is turned on, then if text is selected and you type an opening
delimiter, the opening and closing delimiters surround the selected text. Thus, for example, if
howdy is selected and you type a quotation mark, you’ll get "howdy".

To reverse your auto-pairing preference setting momentarily, hold down the Control
key as you type an opening delimiter. Thus, for example, if auto-pairing is turned
off and you type Control-[, Script Debugger behaves as if auto-pairing were
turned on: if there is an insertion point, Script Debugger types [] with the insertion
point between them, and if text is selected, Script Debugger surrounds it with [and
]. If auto-pairing is turned on and you type Control-[, Script Debugger enters [
just as if it were any old character.

Delimiter Checking As You Type

With this feature (independent of auto-pairing), when you type a right (closing) delimiter,
Script Debugger looks backwards to make sure that it matches a corresponding left
(opening) delimiter. If so, Script Debugger highlights the earlier delimiter momentarily. If
not, Script Debugger beeps.

This feature is turned on through an Editor preference:

• Auto-hilite opening ([{ when typing closing }]). If checked, this feature is
turned on. Use the slider to set how much delay there should be before the opening
delimiter is highlighted, and the Scroll if necessary checkbox to set whether Script
Debugger should momentarily scroll backwards if needed to reveal an opening
delimiter.

Delimiter Selection (Balance)

To select everything within a pair of delimiters, click or select anywhere between the
delimiters and choose Edit > Balance. An Editor preference determines whether the
delimiters themselves will be included in the selection:

• Balance includes enclosing ([{ }]) delimiters. If checked, the Edit > Balance
command selects everything including the surrounding delimiters; otherwise, it
selects everything within the delimiters.

The Balance command also considers a comment to be delimited thing. Thus, if you choose
Edit > Balance when the selection is within a single-line or multi-line comment, the entire
comment will be selected.

This is actually the same feature used for block selection. If you choose Edit > Balance
repeatedly, Script Debugger will select everything within delimiters, then everything within
any delimiters surrounding those, and so on; then it selects the containing AppleScript code
block, then the block containing that, and so on.

Block Structure Text Completion

Script Debugger Help > Develop > Edit > Editing and
Navigation > Contents

Text Completion

As you type the start of an AppleScript term, Script Debugger can fill in the rest of the term
for you. This is essentially the Complete feature that appears in many other Cocoa
applications, such as TextEdit. To see a list of possible completions:

• Type the beginning of an AppleScript term, then press Esc or choose Edit >
Complete. A list of possible completions appears. (This list is drawn from scripting
additions, AppleScript itself, and the tell context, along with relevant identifiers in
the script itself.) Or, if there is just one known completion, the completion is simply
entered for you and selected.

For example:

At this point you press Esc and browser window is filled in for you, because it is the only
known completion. Continuing:

At this point you press Esc and a list of possible completions appears:

When the list appears you can navigate it with arrow keys. The Return key (and many other
possible keys) will accept a selected completion, or you can double-click an entry in the list.
The Esc or Delete key closes the list without inserting a completion.

Delimiters Text Substitution

Script Debugger Help > Develop > Edit > Editing and
Navigation > Contents

Text Substitution

You can define abbreviations with corresponding substitutions; when you type an
abbreviation, Script Debugger replaces it with the substitution. This can be a convenient way
to enter boilerplate text, commonly used control structures and commands, or characters
that are difficult to type directly; you might also use it as a form of automatic spelling
correction.

This feature is turned on through a preference, and managed in the same preference pane:

• To turn on text substitutions, check Automatic Substitution: Enabled in the
Text Substitutions preference pane.

• To use a text substitution, once this feature has been turned on, just type. For
example, in a script, type teh and a space character; Script Debugger corrects teh
to the. The rule is that when you type a sequence of characters, then when you
type a following non-word character, such as a space, a tab, a Return, a comma,
and so on, Script Debugger looks to see whether the preceding characters are an
abbreviation; if they are, it automatically replaces them with the substitution.

• To manage text substitutions, edit the list in the Text Substitutions preference
pane. Use the + button to create a new substitution; use the - button to delete a
selected substitution. Double-click in the Replace or With column to edit text. Even if
text substitutions as a whole are turned on, you can disable an individual
substitution by unchecking it in the On column.

What you are managing here are text pairs. The Replace column is the text you will type (the
abbreviation); the With column is the text that Script Debugger will replace it with (the
substitution).

Script Debugger ships with some text substitutions included, and they illustrate various uses
of this feature. For example:

• You can type dd (plus space) to get display dialog "message", a convenient
way to enter a commonly used command.

• You can type != (plus space) to get ≠; this corrects a common error (many
languages use != as the not-equal operator, but AppleScript does not) and also
helps enter a difficult character (many users can’t remember how to type ≠).

• You can type teh (plus space) and get the; this corrects a common typo.

Observe that the substitution for dd includes the phrase [[select:message]]. This
works just as for clippings: it means that when this substitution is performed, the word
message will appear and will be selected. This is very convenient because it means you can
type rapidly and continuously. To enter display dialog "howdy" you just type
dd[space]howdy and the right thing happens.

The substitution idd demonstrates that text substitutions can consist of multiple lines of
code. (Try it in a script window!) If you find that the preference pane is not a convenient
place to edit a multi-line text substitution, edit the substitution in a script window or a word
processor and paste it into the With column.

Text substitutions are quite analogous to clippings; indeed, they can be thought of as a
convenient way to enter clippings. Text substitutions use the same expansion tags as
clippings. Like clippings, text substitutions constitute boilerplate text that you’re entering
with a single command. With a clipping, that command is a menu choice, or its keyboard
shortcut. With text substitution, the command is the abbreviation, which you type directly
into your script. In many cases, an abbreviation is easier to remember or to type.

Text Completion Miscellaneous Typing and Selection

Script Debugger Help > Develop > Edit > Editing and
Navigation > Contents

Miscellaneous Typing and
Selection

This page collects some miscellaneous typing and selection features that you might otherwise
be unaware of.

To navigate with the keyboard, Script Debugger supports a full repertoire of keyboard
navigation shortcuts:

• Right Arrow and Left Arrow navigate by character.

• Option-Right Arrow and Option-Left Arrow navigate by word.

• Command-Right Arrow and Command-Left Arrow navigate to the two ends of the
current line.

• Option-Up Arrow and Option-Down Arrow navigate a line at a time.

• Command-Up Arrow and Command-Down Arrow navigate to the start and end of the
script.

To select with the keyboard:

• Add Shift to the above keyboard navigation shortcuts.

To select a line:

• Triple-click on the line. You can triple-click-drag to select a stretch of lines.

• Click to the left of the line. Just to the right of the gutter is a narrow area where this
click works to select a line. You can click-drag to select a stretch of lines.

• Click or select anywhere within the line and then type Shift-Command-Right Arrow,
Shift-Command-Left Arrow. You can then use Shift-Up Arrow or Shift-Down Arrow to
select a stretch of lines.

To start a new line:

• Press Command-Return. No matter where the insertion point or selection is in the
current line, it will be abandoned and a new line will be inserted below the current
line, with the insertion point at its start, ready to type. To append an AppleScript
line-continuation character to the current line at the same time, press Command-
Option-Return. This feature may be combined with auto-closing; for example, if you
start in the middle of a tell line and press Command-Return, then if there is no
corresponding end line, one will be created if auto-closing is turned on.

Text Substitution Tell

Script Debugger Help > Develop > Edit > Editing and
Navigation > Contents

Tell

Script Debugger gives you many ways to create a tell block targeting a particular
application. You can insert a tell block into an existing script, or you can create a new script
and insert a tell block into it, in a single move. If text is already selected, the inserted tell
block will enclose it (no text will be destroyed).

These are valuable shortcuts because entering an application’s name manually at the start of
a tell block is a tedious and error-prone operation. Also, most of the time, as you start to
write a script you will already have in mind some application that you want to target, so
creating a tell block is usually a better way to create a new script window than File > New
Script!

• In a script window, choose Edit > Paste Tell. (Alternatively, hold down the Control
key and use the script window’s contextual menu.) The hierarchical menu lists all
running scriptable applications and all previously encountered applications. Choose
an application to insert a tell block targeting it.

• In the dictionary window for an application, choose Dictionary > Paste Tell (or click
the Paste Tell button in the dictionary window’s toolbar), to insert a tell block
targeting that application.

• In the Known Applications inspector, select an application and click the Paste Tell
button.

In all of the above cases (except when using the contextual menu), if you hold down the
Option key, a new window is created. Otherwise, you’re inserting into the frontmost script
window. If there is no open script window, a new window is created.

• Drag-and-drop an application from the Finder into your script window. A dialog
appears asking what you want to do. One option is to paste a tell block targeting
that application.

(Alternatively, drag-and-drop an application’s name from the Known Applications
inspector into your script window.)

• Type ta followed by a space. If text substitutions are turned on, a tell block
targeting the Finder is created, and the word “Finder” is selected, ready for you to
type the name of a different application.

Miscellaneous Typing and Selection Clippings

Script Debugger Help > Develop > Edit > Editing and
Navigation > Contents

Clippings

Script Debugger features intelligent clippings — bits of boilerplate text that you can insert
into your code in a smart way. You can insert a clipping in any of the following ways:

• Choose it from the Clippings menu ().

• Choose Window > Inspectors > Clippings to show the Clippings inspector (if
necessary), and then, in the Clippings inspector, double-click a clipping (or select it
and click the Paste button).

• Control-click in a script window’s text area and choose Paste Clipping from the
contextual menu.

For example, a repeat block is a common control structure. Select some text in your script
that you’d like to be inside a repeat block. Now choose a repeat block clipping, such as
“repeat n times”. A repeat block is inserted into your script window, wrapped around the text
that you selected.

The tooltip for a Clippings menu item is the content of the clipping (hover the mouse over a
menu item to see it).

If you’re interested in creating your own clippings, read on.

Further Details:

How Clippings Work

Tell Inserting Content

Script Debugger Help > Develop > Edit > Editing and
Navigation > Clippings > Contents

How Clippings Work

Script Debugger comes with clippings that correspond to all the commonly used AppleScript
control structures. You can also add your own clippings, to implement any boilerplate that
you frequently use. The clippings are text files in ~/Library/Application Support/Script
Debugger 4.5/Clippings, and you are free to add text files here.

Alternatively, you can keep clippings in the top-level /Library/Application Support/
Script Debugger 4.5/Clippings. Yet a third possibility is to keep them in a folder
called Clippings in the same folder as the Script Debugger application, but this
option is mostly for backwards-compatibility and is not recommended.

A file will appear as a menu item. A folder will appear as a hierarchical menu, and the files
inside it will be its menu items. The name of a file (or folder) is the name that will appear in
the menu, except that certain names or part-names are hidden and used for determining the
order of the menu, as follows:

• If a name starts with the prefix ##), where ## is a two-digit number (00-99), these
digits are used to determine the position of this item in the menu and the prefix
does not appear in the menu item’s name.

• A name ##)-*** will appear as a menu separator, again with its order determined
by the two-digit number ##.

To edit a clipping:

• Choose it from the Clippings menu (or double-click it in Clippings inspector) while
holding down the Option key.

To reveal a clipping file in the Finder:

• Choose it from the Clippings menu (or double-click it in Clippings inspector) while
holding down the Shift key.

In the Clippings inspector you can also choose Reveal in Finder from the tool menu
at the upper right.

A clipping’s text is pasted literally into your script, except for the following expansion tags
which are interpreted intelligently:

[[selected-lines:default text]]
This tag expands to the complete lines containing the script’s current selection. If the
current selection is just an insertion point, default text is used.

[[selection:default text]]
This tag expands to the script’s current selection. If the current selection is just an
insertion point, default text is used.

[[select:text]]
This tag expands to text and also selects it, ready for further typing that modifies the
selection.

[[user]]
This tag expands to the user’s full name, as shown in the Accounts preference pane.

[[account]]
This tag expands to the user’s short name, as shown in the Accounts preference pane.

[[date:format]]
This tag expands to the current date and time, where format is an unquoted strftime()
format string. Alternatively, just say [[date]] and a standard format (mm/dd/yy
hh:mm:ss) will be used.

[[VARNAME]]
This tag expands to the VARNAME environment variable. So, for example, [[SHELL]]
would be expanded to something like /bin/bash. Anything in double brackets that
doesn’t match one of the preceding tag types is taken to be the name of an
environment variable. If there is no matching environment variable name, the tag is
left unexpanded. So, for example, [[howdy]] becomes [[howdy]].

So, for instance, consider this clipping:

[[selected-lines:]]
display dialog "[[select:howdy]]"

What does it do when pasted into your script? First, it skips past all lines containing the
current selection, and inserts itself after the last of those lines, thus starting a completely
new line. That new line says display dialog "howdy", and the word howdy is selected
so that you can now type a replacement string inside the quotation marks.

/Users/mattleopard/Desktop/rosiehelpnew/x-man-page:/strftime

Script Debugger Help > Develop > Edit > Editing and
Navigation > Contents

Inserting Content

Script Debugger has many convenient shortcuts for inserting content into your script from
elsewhere. Here’s a summary.

• You have many ways to create a tell block targeting a particular application.

• You can type an abbreviation corresponding to a text substitution.

• You can type the start of an AppleScript term and let Script Debugger complete it for
you.

• You can take advantage of auto-closing to enter end lines automatically, and auto-
pairing to enter closing delimiters automatically.

• You can paste a clipping to insert boilerplate, such as an AppleScript control
structure.

From the Finder, drag-and-drop a file or folder into your script. A dialog appears asking
what you want to do.

• If what you dragged is an application, one option is to insert a tell block targeting
that application.

• You can insert the name, alias, or pathname (POSIX or Macintosh-style) of the
dropped items. If you dropped multiple items, these are placed in an AppleScript
list.

• You can insert an object specifier (reference) suitable for use in a tell block targeting
the Finder.

• If what you dragged is a text file, you can insert its contents.

From a dictionary window, choose Dictionary > Paste Tell.

• If what’s selected is a command, what’s inserted is a template for issuing that
command. The template is wrapped in a tell block if necessary.

• If what’s selected is an event, what’s inserted is a template for an event handler for
that event.

• Otherwise, what’s inserted is a tell block.

From an explorer view, drag an entry into your script. (Drag from the first column.) Or, if
this is a dictionary explorer, choose Dictionary > Paste Tell.

• What’s inserted is a reference to the selected property or element (or element
collection). The reference is wrapped in a tell block if necessary.

• Alternatively, if what you wanted to insert is the value of a property, control-click on
the property and choose Copy Value (or hold Shift and choose Edit > Copy), and
then paste into your script.

Clippings Shift

Script Debugger Help > Develop > Edit > Editing and
Navigation > Contents

Shift

You can remove or add a level of indentation to the selected lines. To change the
indentation level:

• Select some text and choose Edit > Shift Left or Edit > Shift Right. (You can also
add Shift Left and Shift Right buttons to the script window’s toolbar.)

The selection will be expanded to consist of complete lines, and a tab character will be
removed from or added to the start of each selected line.

AppleScript will perform its own indentation when the script is compiled, which may alter the
number of tab characters at the start of a line (except inside a multiline string literal).

See also on Show Invisibles, Show Spaces, and Show Tab Stops.

Inserting Content Comment

Script Debugger Help > Develop > Edit > Editing and
Navigation > Contents

Comment

Commenting and uncommenting code is a common need when developing AppleScript code,
and Script Debugger provides an editing shortcut for doing this.

• To comment out a stretch of code, select the code and choose Edit > Comment.
Script Debugger will extend the selection to consist of complete lines, and will then
insert a single-line comment character at the start of each of those lines.

• To turn comments into code, select some code and choose Edit > Uncomment.
Script Debugger will extend the selection to consist of complete lines, and will then
remove a single-line comment character from the start of each of those lines, if
there is one. (If there isn’t one, that’s fine. The line is left unaltered.)

(You can also add Comment and Uncomment buttons to the script window’s toolbar.)

Why does Script Debugger use single-line comments rather than surrounding the
selected text with block comment delimiters, (* like this *)? One reason is
that block comments are fragile. An unbalanced double-quote within block comment
delimiters will keep your script from compiling. Single-line comments are simpler.
In fact, with Script Debugger, multiple single-line comments are easier to deal with
than block comments. To insert block comment delimiters, choose Clippings > Block
Comment.

An Editor preference governs what is actually inserted at the start of each line when you
choose Edit > Comment. This permits you to use, for example, either “--” (the traditional
comment character) or “#” (the new comment character introduced in Mac OS X 10.5), and
to set the number of spaces that should follow the comment character.

Shift Tab

Script Debugger Help > Develop > Edit > Editing and
Navigation > Contents

Tab

You can convert tabs to spaces and vice versa. To do so:

• Select some text and choose Edit > Entab or Edit > Detab. (You can also add Entab
and Detab buttons to the script window’s toolbar.)

The selection will be expanded to consist of complete lines, and the indentation whitespace at
the start of those lines will be converted to tabs or spaces respectively.

This is particularly useful when a script must be pasted into some other environment, where
spaces are better interpreted than tab characters. For example, before copying and pasting a
script into an email message or a web page, you might Select All and then Detab.

See also on Show Invisibles, Show Spaces, and Show Tab Stops.

Comment Splitting the Editor

Script Debugger Help > Develop > Edit > Editing and
Navigation > Contents

Splitting the Editor

In a long script, it can be useful to view and edit more than one area of your script
simultaneously. For this reason, Script Debugger lets you split the script window text area
into multiple panes. You can split the text area vertically or horizontally — and you can split
each resulting pane vertically or horizontally. Each pane can be scrolled to display a different
region of the script.

(But you’d probably never split a window into panes quite as insanely as in this picture!)

• To split a script window or pane vertically, click the vertical split icon () in
the vertical scrollbar, or choose Edit > Split Editor Vertically.

• To split a script window or pane horizontally, click the horizontal split icon ()
in the horizontal scrollbar, or choose Edit > Split Editor Horizontally.

• To resize a pane, drag the divider line between panes.

• To close a pane, click its close icon () at the lower right corner of the pane, or
choose Edit > Close Split View.

• To close all panes, Option-click any close icon (), or choose Edit > Close All Split
Views.

What should happen when you change a view setting (such as line wrapping or visibility of
tab stops) in a split pane? Should other split panes change to match, or should their view
settings remain independent? Script Debugger lets you decide. An Editor preference lets you
set the base behavior:

• Synchronize split-view appearance. If checked, then when you change a view
setting in one split pane, other split panes of the same window will change the same
setting to match.

Whichever way you choose, the Option key is a temporary toggle. Hold down the Option key
as you change a view setting to make Script Debugger behave the opposite way from the
base behavior preference. For example, if Synchronize split-view appearance is not
checked, then if you hold down the Option key and change the line wrapping of a split pane
(by clicking its wrap icon, or by choosing View > Wrap Lines), all split panes in this window
will adopt the new line wrap setting.

Tab Find

Script Debugger Help > Develop > Edit > Editing and
Navigation > Contents

Find

Script Debugger provides excellent find (and replace) facilities.

You can operate from within the Find dialog (which appears when you choose Search >
Find), or you can use the menu items in the Search menu (or their keyboard shortcuts). Most
likely you’ll settle on a combination of the Find dialog and a few commonly used keyboard
shortcuts.

Checkbox options in the Find dialog affect subsequent searching even if the Find dialog is no
longer showing. Thus, a common way to find is to choose Search > Find to bring up the Find
dialog, enter the text to look for, set options, and press Return to click the Find button, and
then use Search > Find Again to look for subsequent instances.

If you can see text, you can search for that text without bringing up the Find dialog at all.
Using the Search menu items, you can enter selected text into the Search For field or the
Replace With field, or you can use Search > Find Selection to enter selected text to the
Search For field and find it, in a single move.

Checkbox options, as well as buttons, in the Find dialog are generally self-explanatory. Here
are comments on less obvious features:

• To search backwards as you press one of the three Replace buttons, hold down
the Shift key.

• The Wrap Around setting applies even to Replace All. If Wrap Around is
unchecked and you do a Replace All, only instances of the Search For text after the
insertion point will be affected.

• If Auto-Close Find Window is checked, then if you click the Next, Previous, First,
or Last button and the search succeeds, the Find window will close.

• The little pop-down arrows to the right of the text fields summon history lists of
Search For and Replace With terms that you’ve used earlier. Click a term to enter it
conveniently into the text field.

• Script Debugger supports optional use of regular expressions in the text fields of
the Find dialog. If you don’t know about regular expressions, the best teacher is still
Jeffrey Friedl’s book. Script Debugger uses the ICU flavor of regular expression
syntax.

Experts: Observe that by default . matches any character including the return
character at the end of a line; you can turn this off with (?-s).

An Editor preference lets you set whether the Search For field contents are shared with other
applications.

Splitting the Editor Go To

http://oreilly.com/catalog/9780596528126/index.html
http://icu-project.org/userguide/regexp.html

Script Debugger Help > Develop > Edit > Editing and
Navigation > Contents

Go To

Script Debugger has a “go to” feature that lets you jump to a line by number. To do so:

• Choose Search > Go To Line and enter a line number in the dialog. (The number
that appears when you summon this dialog is the number of the line where you
currently are.)

To work more easily with line numbers, you can elect to show line numbers in your
script. Also, the navigation bar (at the top right, above the text area in the script
window) always shows the current line number. And there’s an Editor preference
that causes line numbers to be shown in a tooltip while you scroll.

Find Navigate

Script Debugger Help > Develop > Edit > Editing and
Navigation > Contents

Navigate

Script Debugger provides convenient ways to navigate through the structure of your
AppleScript code.

As AppleScript programs become larger than a few lines, it’s common practice to divide them
into smaller blocks — handlers and script objects. You should adopt this practice, because it
allows Script Debugger to help you navigate your code.

One possibility is to navigate by jumping from handler to handler, successively. To do so:

• Choose Search > Go to Next Handler and Search > Go to Previous Handler. These
jump to the first line of successive handler definitions.

For more power, use the navigation bar. This is the rectangle at the top of the script
window, to the right, above the text area. The navigation bar shows you where you are, and
it also contains the table of contents popup menu, which lets you jump easily to any part of
your script.

The above illustration shows a typical navigation bar display. 34:17 means the selection
starts at line 34 of the script, and character 17 of that line. (It may look like character 15 to
you, but there are two tab characters creating the indentation.) ∆10 means the selection is
10 characters long. The H symbol means you’re in a handler (other possibilities are S for
script object, P for script property declaration, and G for global declaration). Finally, the
phrase at the end sums up your position in structural terms. Here, on s's justName(s)
means we’re in a script object s that contains a handler justName that takes one parameter
(also called s), and we’re inside that handler.

Hold down the mouse on the navigation bar to bring up the table of contents menu.

The menu shows all script object and handler definition blocks, along with all script property
declarations and top-level global declarations, in an intuitive hierarchical layout. (Hold down
the Option key while choosing the menu to show it without the properties and globals.) The
check mark shows where the selection is now. Choose an item in the menu to jump to it.

You can also insert markers into your script. A marker’s significance is that it appears in the
table of contents menu, which means you can jump to it. A marker is defined as an
AppleScript comment that starts with -->>. (If text substitution is turned on, this may be
converted to --», but that’s okay; it’s still a marker.) AppleScript ignores a marker (because
it’s a comment). But Script Debugger sees it, and lets you know this with a “droplet” symbol
in the gutter:

The text of the comment appears in the table of contents menu:

The order of items in the table of contents menu is determined by an Editor preference —
either items are sorted alphabetically (Sort menu is checked) or they appear in the same
order as they appear in the script (Sort menu is unchecked). Whichever order you prefer,
hold down the Shift key while choosing the menu to show it sorted the other way.

An Editor preference also causes a tooltip to appear whenever you scroll your script.
This tooltip shows the line number and navigation bar entry corresponding to the
first line currently visible in the script window.

Go To External Editor

Script Debugger Help > Develop > Edit > Editing and
Navigation > Contents

External Editor

Script Debugger lets you use an alternative text-editing application to edit a script — BBEdit,
TextWrangler, or TextMate. Script Debugger’s implementation of this feature is seamless.
With a script window open in Script Debugger, you open the same script in an external editor
and edit it there. When you save and close the document in the external editor, you are back
in the Script Debugger document, which has taken on the changes you made in the external
editor.

To start an external editing session on the frontmost script window:

• Choose File > Edit With BBEdit. Actually, the name of the application shown in this
menu item will depend on which of the three applications you have and which ones
are running. Script Debugger will prefer a running application to one that is not
running, and among running applications or non-running applications it will prefer
the order BBEdit, TextWrangler, TextMate.

Thus, for example, if you have both BBEdit and TextMate, this menu item will be
called Edit With BBEdit if both BBEdit and TextMate are running or if neither is
running, but it will be called Edit With TextMate if TextMate is running and BBEdit
isn’t.

When you start an external editing session, two things happen:

1. In the frontmost Script Debugger script window, a dialog appears warning that the
script is being edited externally.

Additionally, the script window is watermarked in its lower right corner with the
word “Locked”.

2. A new window opens in the external editing application, containing the text of the
Script Debugger script window (and the external editing application comes to the
front).

http://www.barebones.com/products/bbedit/
http://www.barebones.com/products/textwrangler/
http://macromates.com/

At this point, the normal chain of events is that you would edit the document in the external
editing application:

• Whenever you save the document in the external editing application, the Script
Debugger copy is updated to match.

• When you close the document in the external editing application, the warning dialog
is removed from the Script Debugger script window (and Script Debugger comes to
the front). This is the normal way in which an external editing session ends in good
order.

Alternatively, you might change your mind and decide to break off the external editing
session prematurely without reflecting the changes from the external editing application
back into the Script Debugger document. To do so:

• Switch back to Script Debugger and click Cancel in the warning dialog.

Navigate

Script Debugger Help > Develop > Contents

Run

When you compile and run (or “execute”) your script, Script Debugger gives you tools for
understanding what happened.

• You can view the result in powerful ways, find out how long your script took to run,
and see the value of persistent variables afterwards.

• If there are errors during compilation or runtime, they are clearly displayed, with full
supplementary information. You can also use the Apple Event Log to find out exactly
what interapplication communications took place.

• If a scriptable application is also recordable, you can record it with Script Debugger.

• You can set a script’s target or parent script.

Further Details:

Compile
Execute
Result
Times
Variables
Errors
Apple Event Log
Record
Default Target
Parent Script

Edit Debug

Script Debugger Help > Develop > Run > Contents

Compile

Before AppleScript will execute your code, the code must be compiled. You can compile your
code separately, or else just try to run it (in which case, if it needs compiling, Script
Debugger will automatically ask AppleScript to compile it before running it).

Any time your script is modified, it needs compiling. Script Debugger provides a clear
indication of whether your script needs compiling. If you have checked the Editor
preference “Show compiled state in gutter”, then a script that needs compiling has a striped
“barberpole” pattern in the gutter. The illustration below shows a script that needs compiling.

To compile your code without running it:

• Choose Script > Compile. Alternatively, you can click the Compile button in the
script window toolbar, or press the Enter key (different from the Return key).

If your script can’t be compiled because it isn’t valid AppleScript code, you’ll get an error
message.

To force your script to recompile even if it hasn’t been altered, hold down the
Option key and choose Script > Recompile (or click the Recompile button in the
toolbar). This will also re-initialize persistent top-level entities to their base values.

Execute

Script Debugger Help > Develop > Run > Contents

Execute

Script Debugger can run a script. In fact, it can run (and debug) multiple scripts
simultaneously. To execute (run) a script:

• Choose Script > Execute (or click the Execute button in the toolbar).

If the script needs compiling, Script Debugger attempts compilation first. If there is a
compilation error, the script won’t start to run.

Otherwise, the script runs. While a script is running:

• A circular progress indicator spins at the right end of the title bar.

• Whenever an Apple event has been sent to an application but the application has not
yet replied, the application’s icon appears at the right end of the title bar.

• In the toolbar, all buttons go dim except for the Stop button. You can click this, or
choose Script > Stop, to interrupt execution.

• In the Script menu, the Execute menu item changes to Running and has a check
mark.

• In the Window menu (and the Windows Inspector), the listing for this script window
is badged with an icon indicating that it is running.

Additionally, if the script is in debug mode, then when the script is executing, the
Pause button is enabled (along with Script > Pause).

When execution ends, the circular progress indicator goes away, and the Stop button is
disabled. If no uncaught runtime error was encountered — that is, if the script ran all the
way to a natural conclusion — there is usually a result.

When you start to execute a script, Script Debugger automatically saves a copy of
the script in a private location. If execution of the script happens to crash Script
Debugger (which can occur if a target application is particularly badly behaved),
just start up Script Debugger again. Your script will be opened automatically,
magically restored, just as it was when you started to execute it.

Note that you can control the execution of the frontmost script even when you’re in a
different application! Use Script Debugger’s Dock menu. It contains Execute and Stop menu
items (and others).

Script Debugger helps you run individual handlers in a script.

Further Details:

Testing Handlers

Compile Result

Script Debugger Help > Develop > Run > Execute > Contents

Testing Handlers

Script Debugger lets you run individual handlers in a script. This can be a valuable testing
and debugging technique.

Standard Event Handlers

Consider the applet script in the illustration below. If you simply run this script, you’ll see the
“Howdy!” dialog. That’s because what you’ve just run is the run handler. But what if you
want to test the idle handler? Script Debugger lets you do this. To do so:

• Choose Script > Execute > Idle. Alternatively, hold down the mouse down on the
Execute button in the toolbar. A popup menu appears, and you can choose Idle in
this menu.

This does two things:

1. It actually runs the idle handler. (To prevent this, hold down the Shift key as you
choose Idle.)

2. It sets the “default” handler of this script (also called the script’s current event) to
be the idle handler.

The menu you are using here — the menu that is attached hierarchically to Script > Execute,
and that appears when you hold down the mouse down on the Execute button — is called the
Event Handler menu. It is attached to Script > Execute, Script > Trace, Script > Step
Over, and Script > Step Into, as well as to the Execute, Step Over, and Step Into toolbar
buttons.

The standard event handlers listed in these menus are the five standard applet events, the
Folder Actions suite events (defined in StandardAdditions.osax), and the Digital Hub Actions
suite events (defined in Digital Hub Scripting.osax).

Note: If your script has one of these event handlers, but the corresponding menu
item is not enabled, compile the script. That should fix it.

The Current Event

What does it mean to say that the script’s current event is the idle handler? It means that
the next time you execute the script, you’ll execute the idle handler automatically. This
behavior is there to make it easy for you to test an event handler, make a change in the
script, and then test the event handler again. But it involves a change in the basic behavior
of your script, since normally when you run a script, it’s the run handler that runs.

To alert you to the fact that there is a current event, the current event is checked in the
menu, and a current event indicator appears below the toolbar of your script window:

To revert the current event to being the run handler once again, choose Script > Execute >
Run (again, hold down the Shift key to prevent the run handler from running when you do
this). The current event indicator goes away.

Parameters and the Event History

The open handler and the event handlers defined in the Folder Actions and Digital Hub
Actions suites are a bit different, because they expect parameters, which are aliases or files.
For example, an open handler expects a list of aliases to the files and folders. And an
adding folder items to handler expects two parameters, an alias to the watched
folder and a list of aliases to the added files. Script Debugger helps you even further with this
sort of handler.

Such a handler is listed in the Event Handler menu with an ellipsis (…) after its name. When
you choose such a handler from the menu, Script Debugger puts up a dialog where you can
select files and folders. An appropriate parameter or parameters will then be passed to the
specified handler.

In the case of adding folder items to and removing folder items from,
what you’re supplying in this dialog is the second parameter, the item(s) that are
allegedly being added or removed. Script Debugger will then use the containing
folder of the item(s) as the first parameter, the watched folder.

In the case of just the open handler, there is another alternative. Drag-and-drop
files and folders directly from the Finder into your script. If your script has an open
handler, one of the options in the resulting dialog is to invoke the open handler
with these Finder items as parameter.

Script Debugger remembers each alias or list of aliases produced in this way, along with the
event handler it is to be passed to. Script Debugger adds this information to the bottom of

the Event Handler menu, and makes it the current event. This list of remembered event
handlers and parameters is called the event history.

Thus, the next time you want to test this handler with these same parameters, you just
choose it from the event history (or, if it is the current event, click the Execute button). And
of course you can switch from testing one handler/parameter set to testing another, by
choosing that menu item from the event history.

The event history is remembered until you close the script window; or you can deliberately
remove it by choosing Clear Menu (which is always the last item in the Event Handler menu if
there is an event history).

A continue statement in an event handler called in this way will generate an error
in Script Debugger. This is deliberate and may be safely ignored. The technical
reason is that if, for example, we permitted the continue quit statement in your
quit handler to execute, Script Debugger itself would quit!

Other Handlers

What if the handler you want to test is not one of the standard event handlers already listed
in the Event Handler menu? No problem. You can still call just the specific handler, and it is
added to the event history so that you can easily call it again with the same parameters. To
do so, you take advantage of Script Debugger’s scriptability, which allows one script to call a
handler in another script.

Actually, you can do this for standard event handlers as well. For example, in the case of the
open handler discussed above, you could open a new script window in front of the applet
script (this ordering is to make sure that the applet script is document 2) and, in the new
window, run this script:

tell application "Finder" to get disk 1 as alias
tell document 2

open result
end tell

This calls the open handler in the applet script and adds it, with this parameter, to the applet
script’s event history.

However, you are more likely to use this technique to test a top-level user handler. For
example, suppose you have a complex script containing this top-level handler:

on justName(s)
set text item delimiters to ":"
return last text item of s

end justName

You can check whether this handler is behaving correctly, without the inconvenience and
overhead of running the rest of the complex script. Make a new empty script window in front
of the complex script, and enter and run this script:

tell document 2
justName("hey:ho:nonny nonny no")

end tell

This calls justName in the complex script, and adds the call with this parameter to the
event history. Now you can repeatedly test this handler and develop it without altering the
rest of the complex script.

Similarly, during external debugging, an entry-point handler called by the external
application is added, with its parameters, to the target script’s event history. (This happens
only if the script is in debug mode, though, since otherwise this would not be external
debugging.)

Script Debugger Help > Develop > Run > Contents

Result

Most scripts, when run, will implicitly or explicitly generate a result. This result is entered into
the script window’s result drawer, in the top pane (the result pane) of the drawer.

A Debugger preference lets you set what happens when a script completes running (“Show
result when scripts pause or end”):

• No. If the drawer is not open, it does not open automatically. To summon the
drawer manually if it isn’t open, choose Script > Show Result (or click the Show
Result button in the toolbar).

• Show Result Drawer. The drawer opens, if necessary, revealing the result. This is
the factory default setting, and will probably best suit most people’s way of working.
Seeing the result drawer has certain advantages. Not only do you see the result, but
you also view persistent variables and execution times.

• Show Result Viewer window. The result is displayed in a separate viewer window
— in fact, it is the very same viewer window you can summon manually by choosing
Script > Show Result in Viewer.

An Editor preference lets you set whether the open or closed state of the result drawer
should be remembered when a script is saved and restored when it is next opened.

The open or closed state of the result drawer is one of the window features that you can
configure by setting the default state for all new script windows.

The result pane is a viewer, with many capabilities and view options. In particular, when the
result is an object reference, the result pane in Best view is an explorer view. Script
Debugger probes this object reference to obtain its elements and properties and their values
when the result is generated. This feature is very informative and can reduce your script
development time. So, for example, consider this script:

tell application "Finder"
get desktop

end tell

The result is the reference desktop of application "Finder", but in Best view the
result pane shows you more than this — it shows you all about the desktop at this moment:

Moreover, since this is an explorer, you can do all the things in the result pane that you can
do in any explorer. Not only can you separate off the result pane itself as an individual viewer
window (by choosing Script > Show Result in Viewer); you can separate off any entry within
the result as an individual viewer window. You can drill down the hierarchy within the
explorer, you can transfer references and values from the explorer to your script, you can
ask for a dictionary definition, and you can even alter values in real time, thus affecting the
running target application.

Further Details:

Viewer

Execute Times

Script Debugger Help > Develop > Run > Result > Contents

Viewer

A viewer is Script Debugger’s powerful, flexible way of displaying an AppleScript value.
Viewers appear, or can be generated, in several parts of the Script Debugger interface. The
result of running a script initially appears as a viewer pane in the script’s drawer, aspects of
an error from running a script may appear in a viewer pane, and double-clicking a line of an
explorer view opens a separate viewer window.

A viewer pane, such as the result pane, can itself be reopened as an individual viewer
window. This can be a very convenient thing to do, especially when the result pane contains
a lot of information. To separate off a result pane off as an individual window, choose Script
> Show Result in Viewer. (Alternatively, use the “tools” popup menu at the upper right of the
result pane. Choose the Show Result in Viewer item.)

A separate viewer window, or a cascade of separate viewer windows (as shown in the
illustration below, which shows three viewer windows in front of an explorer view), can be a
way to focus more easily on the information that interests you.

If there is a change in the data from which a viewer window was generated, the viewer
window changes. For example, you can display a script result as a separate window and
leave that window open. Every time you run your script, this separate result viewer window
will change to show the new result. Similarly, if you open a separate viewer window from an

explorer and then reload the data in the explorer, the viewer window will change (if
necessary) to reflect the changed data.

A viewer window may also close spontaneously if the value being viewed ceases to
exist. For instance, a viewer window that is viewing a variable from the variables
pane will close when the variable goes out of scope. A viewer window that is
viewing an element of a class will close if that class is refreshed and the element no
longer exists.

Viewer Options

Viewer windows and viewer panes have many options and capabilities.

You have a choice of three views — Best, Source, and AEPrint. You can toggle pretty-printing
on and off.

There are also various other options for how material is displayed in each view. These are
essentially the same as certain display options for script windows. Where appropriate, you
can toggle wrapping, and you can show tab stops, invisible characters, and spaces.

To set defaults for the size, view, and display options of viewer windows:

• Summon a viewer window, set its size and display as desired, and choose Window >
Set Default Viewer Size & State.

There are two menus within the viewer: the “tool” popup menu at the upper right of the
viewer (it has an icon like a gear), and the contextual menu (control-click to summon it).
They bring together the above options, along with some additional capabilities. You can look
up a class or native datatype in the dictionary. If what’s being viewed is an alias or some
other reference to a file on disk, you can reveal or open the corresponding item in the Finder.

Further Details:

Best
Source
AEPrint
Pretty-Print

Script Debugger Help > Develop > Run > Result > Viewer > Contents

Best

Best view in a viewer is significant in the following cases:

• If the value being viewed is an object reference, the actual object’s elements and
properties are shown, in real time, as an explorer view.

• If the value is a collection (a list or a record), the items of the collection are
displayed in an explorer.

• If the value is a valid alias or a file object reference, it is shown as a pathname
that can be displayed in different styles (HFS or colon-delimited, POSIX or slash-
delimited, and as the Finder would refer to it), as shown in the illustration below.

• If the value is image data, it is shown as an image.

Otherwise, you won’t see much difference from source view.

Source

Script Debugger Help > Develop > Run > Result > Viewer > Contents

Source

Source view in a viewer presents the value as the source language (usually AppleScript)
would present it. This is particularly telling in cases where it can be contrasted with Best
view. For example:

• In Best view, an object reference is an explorer view. In Source view, an object
reference is the reference.

• In Best view, a list is shown as an explorer. In Source view, a list is delimited by
curly braces.

• In Best view, a string is shown as the text of the string. In Source view, a string is
delimited by quotation marks.

Best AEPrint

Script Debugger Help > Develop > Run > Result > Viewer > Contents

AEPrint

AEPrint view in a viewer shows the value as it would be communicated through an Apple
event. For example, here’s the Finder’s desktop in AEPrint view:

'obj '{
'form':'prop',
'want':'prop',
'seld':'desk',
'from':'psn '($00000000000C0001$)

}

In the Apple Event Log window, extra 'ascr' events are also generated corresponding to
the points at which the tell target changes.

'ascr'\'tell'{
'----':'psn '($00000000000C0001$)

}
'core'\'getd'{

'----':'obj '{
'form':'indx',
'want':'cwin',
'seld':1,
'from':''null''()

},
&'csig':65536

}
'ascr'\'tend'{ }

If you’re not someone who knows or cares about AEPrint format and raw Apple events, then
don’t worry about AEPrint view.

Source Pretty-Print

Script Debugger Help > Develop > Run > Result > Viewer > Contents

Pretty-Print

Pretty-printing in a viewer arranges text in lines, with indentations, to make the value
easier to read. Pretty-printing is useful in Source view and AEPrint view. To give a simple
example, pretty-printing makes the difference between this (no pretty-printing):

{1, 2, 3}

and this (pretty-printing):

{
1,
2,
3

}

To control pretty-printing:

• Choose View > Pretty Print. If the menu item is checked, pretty-printing is turned
on. Alternatively, use the Pretty Print checkbox within the viewer. (And the Apple
Event Log window has a Pretty Print button in the toolbar.)

AEPrint

Script Debugger Help > Develop > Run > Contents

Times

Script Debugger automatically times your script as it runs. The timings accumulate as the
script runs, and the total cumulative results can be viewed afterwards. This feature is
especially useful during development when you’re trying to make your script as fast and
efficient as possible.

To learn how long your script took to run, you don’t need to do anything special. Just run
the script. The result drawer displays the timings, at the bottom of the drawer:

A typical timing might be something like this:

Duration: 1.12s, AppleScript: 0.03s, AppleEvents: 1.09s (92)

The times displayed consist of the total duration, followed by a breakdown into time spent
within the script itself and time spent sending Apple events (and waiting for the replies). The
two latter times will sum to the former. The number in parentheses is the number of Apple
events sent.

You can also get a handle on what Apple events are being sent by using the Apple
Event Log.

Result Variables

Script Debugger Help > Develop > Run > Contents

Variables

Script Debugger displays the names and values of persistent variables (top-level entities —
script objects, script properties, and globals) contained in your script. They are shown in the
result drawer, in the third pane, whose columns are headed “Variable” and “Value”. This is
the variables pane.

For example, running this script:

property x : missing value
set x to "Hello there!"

results in the variables pane looking like this:

The notion “contained in” is made more complicated by AppleScript’s script object
inheritance mechanism. By default, your script’s parent is the AppleScript scripting
component, so your script effectively “contains” the top-level entities of this virtual
script object — and Script Debugger displays it. In the above illustration it displays

it twice, once by virtue of being the script’s parent, and again by virtue of being the
named virtual script object AppleScript, which is always globally accessible.

The variables pane is an explorer view, with all that this entails. For example, you can
double-click a line of the variables pane to see that value displayed in its own viewer window.
You can also edit (change) the value of persistent top-level entities shown in the variables
pane (for example, in the above illustration, the property x is editable); you might use this
feature to experiment with your script’s behavior under different initial values of your
persistent entities. (Script Debugger preserves the value of persistent top-level entities when
a script is saved and re-opened.)

The variables pane has a more extended role during debugging. It then displays not only
persistent top-level entities, and not only after the script has run — it displays all variables,
while the script is still in the process of running.

Times Errors

Script Debugger Help > Develop > Run > Contents

Errors

AppleScript generates two kinds of error — compile errors and runtime errors — and Script
Debugger provides full information about where the error occurred and what went wrong.

Script Debugger presents error information in a dialog. When you dismiss the dialog, you’ll
find that your script has been clearly marked with the location of the error, in three ways:

• A little “stop sign” icon () for a compile error, or “red arrow” icon () for a
runtime error, appears in the gutter next to the problematic line.

• The line itself is highlighted, and the troublesome words are selected.

• A little red mark appears in the scroll bar.

To show the error message again after dismissing it:

• Choose Script > Show Last Error, or click on the “stop sign” icon () or “red arrow”
icon () in the gutter. Alternatively, hover the mouse over the stop sign or red
arrow, to see the text of the error message in a tooltip. (You can also add a Show
Last Error button to the script window’s toolbar.)

To scroll to where the problem is:

• Use the red mark in the scroll bar as a guide, or choose Edit > Go To Last Error (this
immediately scrolls the window to bring the problematic line into view).

Compile Error

A compile error is reported as a text message from AppleScript. Script Debugger displays this
text as a dialog.

Runtime Error

A runtime error can result in a more elaborate message from AppleScript. Therefore, the
error dialog is more elaborate as well.

The message can contain up to six parts. Five of these correspond to the five parameters of
the AppleScript error command, plus there is an Application parameter supplied by
AppleScript. In the dialog, Script Debugger presents up to five of these parts of the message
as individual panes, which you access through the buttons at the top of the dialog. The sixth
part, the error number, is shown at the lower left of the dialog. Here is the correspondence
between error command parameters and how they are shown in the dialog:

message string
Shown as the Message pane.

number
Shown at the lower left of the dialog.

partial result
Shown as the Partial Result pane.

from
Shown as the Offending Object pane.

to
Shown as the Expected Type pane.

[application]
Shown as the Application pane.

A pane of the error dialog might consist of a viewer. If the value shown is an object
reference, Best view is an explorer view, and individual lines can be double-clicked to create
a separate viewer window.

If your script catches (handles) a runtime error with a try block, the error does not
percolate up to AppleScript and it is not reported back to Script Debugger. In effect,
there is no error. In debug mode, however, you can break on an error even if it is
caught.

For information about a special kind of error situation where a file or transaction is left open,
read on.

Further Details:

Leaks

Variables Apple Event Log

Script Debugger Help > Develop > Run > Errors > Contents

Leaks

If an uncaught runtime error occurs, or you interrupt execution, when your script still has
certain links to the outside world in an open state, Script Debugger helps out by giving you
the chance to close them. There are two primary situations:

• Your script has left a file open (using the open for access command).

• Your script is in the middle of a transaction (talking to FileMaker Pro, the only
application that implements transactions) and has left the transaction open.

In a case like this, Script Debugger will show its Leaks dialog.

In the above illustration, the dialog shows a list of files that have been left open (there
happens to be just one). Typically, you should click the Close All button. This closes all open
files.

Alternatively, you could select a file and click the Forget button. This means to leave the file
open (basically you’re telling Script Debugger not to help out here), but that isn’t something
you’re likely to want to do, since the leak then remains.

In the case of a transaction, you can close the transaction to “commit” it, or click Abort to
“roll back” the transaction.

The Leaks dialog can be summoned any time open resources exist, by choosing Script >
Show Leaks. (You can also add a Leaks button to the script window’s toolbar.)

Script Debugger Help > Develop > Run > Contents

Apple Event Log

The Apple Event Log is a place where your script can generate messages during execution
(with the AppleScript log command), plus you can keep track of the Apple events that pass
between your script and target applications. To summon the Apple Event Log window:

• Choose Window > Apple Event Log. (No logging takes place unless the window is
open.) You can also add an Apple Event Log button to the script window’s toolbar.

The tabs along the bottom of the Apple Event Log window list open script windows. There is
only one Apple Event Log window, but you can have many scripts open, so each script is
logged into its own tab.

You can determine whether (and how) each script performs logging when it executes. You
can make this determination — and you can actually run the script — while working either in
the script window or in the Apple Event Log window:

• If you’re working in a script window, use the View menu to control logging, and
use the Script menu or the toolbar to control script execution. As you switch
between script windows, the Apple Event Log window automatically brings forward
the tab of the frontmost script window, so you can watch the log easily.

• If you’re working in the Apple Event Log window, use the toolbar or the View
menu to control logging, and use the Script menu to control script execution. To
determine which script you’re controlling, use the tabs at the bottom of the Apple
Event Log window. Whichever tab is frontmost, that’s the script you’re controlling.
(You can also bring a particular script window to the front, by double-clicking its
tab.)

The toolbar’s Format popup menu items (and the corresponding menu items in the View
menu) determine the “language” in which subsequent logging will be shown:

• Source (or View > Log As Source) means the compiled OSA language of the script
being run. Typically, this will be AppleScript.

• AEPrint (or View > Log As AEPrint) means that the entire structure of Apple events
is shown in AEPrint format.

• Raw (or View > Log As Raw (Chevron) Events) is like a combination of the other
two. Logging is done in the source language, but individual terms are shown as raw
Apple event codes, much as you can do with a script or dictionary.

The toolbar’s Logging popup menu items (and the corresponding menu items in the View
menu) determine what will be logged:

• Nothing (or View > Log Nothing) means that logging is turned off for this script.
(Logging slows down a script’s execution, so if the Apple Event Log window is open,
for maximum speed when you run a script, turn off logging for that script.)

• Log Events (or View > Log Log Events) means that only log commands in the
script will cause the log to be written to. A log command in your script has no
effect unless the Apple Event Log window is already open and the Logging setting is
not Nothing. A log command causes the logged value to appear in the Apple Event
Log window as if it were a multi-line comment, (*thus*).

• All Events (or View > Log All Events) means that log commands and all outgoing
Apple events will be logged.

• All Events & Replies (or View > Log All Events & Replies) means that log
commands and all outgoing Apple events and the corresponding replies from the
target application(s) will be logged.

Even if all events are being logged, your script can temporarily disable logging of
outgoing Apple events, in code, by issuing the stop log command. (And then
logging can be enabled by issuing the start log command.) The stop log and
start log commands are built into AppleScript, but only Script Debugger obeys
them (you can’t issue these commands in Apple’s Script Editor).

You can control the Apple Event Log window modes and views. Also, when you’re debugging,
the Apple Event Log window takes on additional powers.

Further Details:

Logging Modes and Views

Errors Record

Script Debugger Help > Develop > Run > Apple Event Log > Contents

Logging Modes and Views

You can determine how the Apple Event Log window displays material. These settings apply
to the tab that is frontmost, not to the Apple Event Log window as a whole.

Logging is performed in one of two append modes. Either new logged material is appended
to the material already present (append mode is on), or else the log is cleared automatically
as the script begins to run (append mode is off). To determine the append mode:

• Choose View > Append To Log. If the menu item is checked, append mode is on.
Alternatively, use the Append button in the Apple Event Log window toolbar to
toggle the mode. If the button says “Append”, append mode is on.

To clear the log manually when the Apple Event Log window is frontmost, choose
Edit > Delete (or click the Clear Log button in the toolbar).

The option to pretty-print logged material makes a difference when you’re viewing in
AEPrint format, and also when lists and records are shown in Source format. Nested
structures are more readily comprehended when pretty-printing is turned on. To determine
the pretty-print setting, bring the Apple Event Log window to the front, and then:

• Choose View > Pretty Print. If the menu item is checked, pretty-printing is turned
on. Alternatively, use the Pretty Print button in the toolbar to toggle the mode. If the
button says “Pretty Print”, pretty-printing is turned on.

Other view settings that you can make when the Apple Event Log window is frontmost are
parallel to those for a script window. You can turn wrapping on or off, and you can show tab
stops, invisible characters, and spaces.

All the options mentioned on this page can be set as your defaults for the Apple
Event Log window tab belonging to a new empty script window.

Script Debugger Help > Develop > Run > Contents

Record

You can record user actions in a recordable application. A recordable application (such as
BBEdit, or the Finder) translates user actions into the AppleScript code that would be used to
perform those same actions programmatically. This can be useful as a way of learning to
script that application.

To record user actions:

• Choose Script > Record (or click the Record button in the toolbar) and switch to the
recordable application. Alternatively, if you’re already in the recordable application,
you can choose Record from Script Debugger’s dock menu.

Perform actions in the recordable application. Script Debugger will record the AppleScript
equivalent of each action. When you’re done recording, switch to Script Debugger and choose
Script > Stop (or click the Stop button in the toolbar, or choose Stop from Script Debugger’s
dock menu).

Apple Event Log Default Target

Script Debugger Help > Develop > Run > Contents

Default Target

Script Debugger lets you set an application as your script’s implicit target (the
application to which undirected Apple events should be sent). To do so:

• Choose Script > Default Target and select the desired target application.

The application should be running or in the list of known applications (or it can be AppleScript
Studio, which appears at the top of the list). When you run your script, the target application
must be running. If it isn’t, Script Debugger will offer to launch it.

This feature is useful for simulating runtime environments where there is in fact a significant
implicit target. For instance, if you’re going to run a script from BBEdit’s Scripts menu, code
targeting BBEdit doesn’t have to appear in a tell block, because you’re “inside” BBEdit
already. So you could have a script that uses BBEdit commands and terminology with no tell
block. To test or run such a script from within Script Debugger, you need a way to make
BBEdit the default target, and that’s what this feature provides.

Record Parent Script

Script Debugger Help > Develop > Run > Contents

Parent Script

Script Debugger lets you set another script as the implicit parent of the current script
(using AppleScript’s script object inheritance mechanism). Both scripts must be open. Then:

• Bring the “child” script frontmost and choose Script > Parent Script and the name of
the parent script. (You can also add a Parent Script popup menu to the script
window’s toolbar.)

This parent-child relationship persists only while both scripts are open. If you try to close the
parent script, you’ll get a dialog warning that you’re about to break the parent-child
relationship.

This feature is useful for testing individual handlers in a script without altering that script. It
can be employed to make a set of top-level entities (properties, handlers, etc.) from one
script available in another, or for simulating a runtime environment where such parent script
relationships are used.

Default Target

Script Debugger Help > Develop > Contents

Debug

Debugging a script is like running it, except that as it runs in debug mode, your script can
pause in the middle. Script Debugger can debug (and run) multiple scripts simultaneously.

This opens up all sorts of new possibilities. You can see (and alter!) the values of your
script’s variables, and other AppleScript values, as they change during the course of
execution. You can see what code is executed and what choices your code makes. The Apple
Event Log window also takes on new powers. Thus, with debugging, you can learn much
more about how your script operates.

Debugging is a separate mode. A script is either in debug mode or it isn’t. When you enter
debug mode, the window changes slightly, to accommodate things like breakpoints and code
coverage in the gutter, and additional menu items (and toolbar buttons) become active to
permit stepping through the code.

As your code executes in debug mode, it can pause, and thus the big question is, when will it
pause? The answer involves chiefly the interplay between breakpoints and the stepping
commands.

Further Details:

Turning On Debugging
Pause
Execute When Debugging
Breakpoints
Step
Trace
Call Stack
Variables (Debug Mode)
Expressions
Exceptions
Code Coverage
Apple Event Log (Debugging)
External Debugging

Run

Script Debugger Help > Develop > Debug > Contents

Turning On Debugging

Debugging is a separate mode. A script is either in debug mode or it isn’t. To turn on debug
mode for a script:

• Choose Script > Enable Debugging. If the menu item is checked, debugging mode is
on.

The script window appearance changes slightly, as shown in the illustration below:

Notice the indications in the above illustration that you’re in debug mode:

• The Step Over and Step Into buttons are enabled in the toolbar.

• The language popup has changed from AppleScript to AppleScript Debugger X.

• The gutter has widened and contains diamonds (to show where breakpoints can go).

To turn off debugging mode:

• Choose Script > Enable Debugging again, to uncheck it.

When you’re finished debugging, you will probably want to save your script not in debugging
mode. A script left in debug mode (with its language set at AppleScript Debugger X) is not
portable to machines that don’t have Script Debugger, and won’t run normally in other
environments. (Apple’s Script Editor cannot even open such a script.) Having saved a script
in debug mode, you would not want to distribute it to other users accidentally. (Also, a script
in debug mode runs slower and uses more of AppleScript’s internal resources.)

There is, however, one good reason for deliberately saving a script in debug mode
and running it elsewhere — so that you can debug externally.

Pause

Script Debugger Help > Develop > Debug > Contents

Pause

The difference between debug mode and normal mode is that in debug mode your script can
pause while executing. The key to debug mode’s behavior is the relationship between the
various things that can cause your script to pause.

When a script is paused:

• The Execute command becomes the Resume command. The name changes in the
Script menu and in the toolbar.

• In the Script menu, the Pause menu item is changed to Paused and is checked.

• In the toolbar and the Script menu, the step commands (and Stop) are enabled.

• In the Window menu (and the Windows Inspector), the listing for this script window
is badged with an icon indicating that it is paused.

• The all-important blue arrow in the gutter indicates the line at which your script is
paused; this line has not yet been executed.

Visualize what happens when your script runs. One line is executed, then another, then
another. There are branches, so some code might not be executed. There are loops and
handlers, so some code might be executed several times. Like a mouse running in a maze,
the computer traces a path of execution through your code. (You can actually watch this
happening in debug mode, by tracing.)

• A breakpoint is a line where, if the path of execution comes to it, execution will
automatically pause. It pauses before executing the breakpointed line. Breakpoints
take priority over everything. When you are in debug mode, no matter how you
cause execution to proceed, the script will pause when the path of execution hits a
breakpoint (unless you have unchecked Script > Break on Breakpoints).

• The step commands cause execution to proceed by a limited amount. A step
command means, “Start or resume executing, and pause when you come to a
certain thing,” where each step command has a different idea of what that certain
thing is. But remember, breakpoints take priority. If the path of execution hits a
breakpoint before hitting the thing the step command is looking for, execution will
pause (unless you have unchecked Script > Break on Breakpoints).

• If you’ve elected to break on exceptions, encountering a runtime error (even an
error that your script catches and handles) will pause your script.

• During a lengthy bout of execution, you can manually pause the script by
choosing Script > Pause (or use the Pause button on the toolbar).

Distinguish stopping from pausing!

• The Pause button, and all the other ways of pausing, leave you
somewhere in the middle of execution. From here, you can proceed
further, even completing the script normally if you want to.

• The Stop button (or choosing Script > Stop) aborts execution right
where it is and returns everything to a completely neutral state. If
you execute the script now, you’ll be starting at the very beginning
once more.

While you are paused, you can examine the state of your script. You can view the call stack,
the values of your variables, the values of expressions, and the Apple Event Log window.

Then you can make your script proceed once again.

Tip: If your script is paused but you don’t know where (because you’ve scrolled to
examine some other region of the script), choose Search > Go to Current Line to
bring the line containing the blue arrow into view.

Turning On Debugging Execute When Debugging

Script Debugger Help > Develop > Debug > Contents

Execute When Debugging

Here is a summary of the ways you can start or resume execution when you’re in debug
mode.

• Choose Script > Execute or Script > Resume (they are the same menu item), or use
the Execute or Resume button in the toolbar (they are the same button).

• Choose Script > Trace, or Option-click the Execute or Resume button in the toolbar.
Execution will proceed in trace mode, which is slower than normal execution so that
you can see the path of execution as it occurs.

• Issue any Step command.

• Issue the Execute (or Trace) to Here command. This is a way of setting a breakpoint
and resuming execution at the same time.

Pause Breakpoints

Script Debugger Help > Develop > Debug > Contents

Breakpoints

A breakpoint designates an executable line of code where your script will pause if the path
of execution reaches it. When a script pauses at a breakpoint, it pauses before executing the
breakpointed line.

You can create a breakpoint only in debug mode, but the breakpoint is not lost if you leave
debug mode — it will still be there the next time you switch to debug mode. Breakpoints are
saved when you save a compiled script in debug mode. They are lost when you save a
compiled script in normal mode and close the script.

Places where you can set a breakpoint are shown with diamonds in the gutter of the script
window.

To set a breakpoint:

• Select within the desired line, then choose Script > Set Breakpoint. Alternatively,
click in an empty diamond. The diamond is filled with red, showing that a breakpoint
has been set.

To clear (remove) a breakpoint:

• Select within the desired line, then choose Script > Clear Breakpoint. Alternatively,
click in a red diamond. The diamond becomes empty, showing that there is no
breakpoint there. You can clear all breakpoints at once by choosing Script > Clear All
Breakpoints.

You can also leave all breakpoints in place but turn them off temporarily by choosing
Script > Break on Breakpoints. If the menu item is unchecked, breakpoints are disabled.
Encountering a breakpoint in the path of execution will not cause your script to pause. (If
breakpoints appear to have mysteriously stopped working, check to make sure that Break on
Breakpoints has not gotten unchecked!) Also, there is an optional toolbar icon you can add to
the script window toolbar; the icon toggles its state to show whether we’re going to break on
breakpoints or not.

It is also possible to make a temporary breakpoint. A temporary breakpoint is a
breakpoint which, when it is encountered, clears itself. Thus, we will pause there, but only
once (because after that, the breakpoint will be gone). This is convenient, for example, to
pause the first time through a loop but not on subsequent iterations. To set a temporary
breakpoint, choose Script > Set Temporary Breakpoint. Alternatively, Option-click in an
empty diamond. The diamond gets a little + sign in it.

In the above illustration:

• The repeat line has an empty diamond. A breakpoint could go there, but there
isn’t one now. (The blue shading in the gutter indicates that execution has passed
through that line.)

• The set line has a breakpoint (the diamond is red), and we are paused there (the
blue arrow is there), before executing the line.

• The return line has a temporary breakpoint (there is a + sign in its diamond).
When we proceed and reach it, we will pause there and the breakpoint will be
cleared.

The execute to here facility is a convenient way to combine setting a breakpoint with
resuming execution.

Further Details:

Execute to Here

Execute When Debugging Step

Script Debugger Help > Develop > Debug > Breakpoints > Contents

Execute to Here

“Execute to here” means to start or resume execution until a certain line is reached, pausing
at that line. You could do this by setting a breakpoint on the target line and executing (or
resuming execution). In fact, the “execute to here” facility is a shortcut for doing exactly
that.

To use “execute to here”:

• Select within the line that you want to execute to, and choose Script > Execute To
Here. Alternatively, Shift-click in the empty diamond of the line that you want to
execute to (the target line). A temporary breakpoint will be set there, and execution
will start or resume.

If a breakpoint is encountered before the target line is reached, we will pause at
that breakpoint.

A variant of “execute to here” is “trace to here”, which is the same except that we trace
instead of executing at normal speed. To use “trace to here”:

• Choose Script > Trace to here. Alternatively, Option-Shift-click in the empty
diamond of the target line.

Script Debugger Help > Develop > Debug > Contents

Step

There are three Step commands — Step Over, Step Into, and Step Out. You can choose
them from the Script menu or click the buttons in the toolbar. We’ll use the code in the
illustration below to show what they mean. In the illustration, we are paused at a breakpoint
at line 9 (without yet having executed line 9).

• Step Into is the simplest. It means, “Execute the current line of code, and then,
wherever the path of execution takes you, pause right there, on the next line that
would be executed.”

So, in the illustration above, Step Into would cause the script to pause at line 5.
Why? Because line 9, where we are paused, calls the pad handler. So when we
execute it, we’ll dive into the pad handler, and the next executable line where we
can pause, in that path of execution, is line 5.

• Step Over is similar to Step Into, except that it follows an additional rule, “Don’t
pause in a deeper level of the call stack than where you are right now.”

So, in the illustration above, Step Over would cause the script to pause at line 10.
Why? Because that’s the next executable line that isn’t at a deeper level. Line 9,
where we are paused, calls the pad handler, which is a deeper level, so we don’t
pause until the next executable line after the path of execution has returned from
the pad handler.

• Step Out means, “Execute until you come to the next executable line at a higher
level of the call stack than where you are right now, and then pause.”

So, in the illustration above, Step Out would cause the script to pause at line 13.
Why? We are paused at line 9, in s’s implicit run handler. We execute to the end of
the run handler, which is line 10, and return from s’s implicit run handler. Now we
are at a high level, so we want to pause. In fact, we are in line 12, because that is
where s’s run handler was called. But we don’t pause in line 12, because if we were
going to pause there, it would be before executing line 12 and before telling s to
run. So now we’re at line 13.

All of those details are predicated on the supposition that no breakpoints are
encountered. Suppose, for example, that there were a breakpoint at line 5 (and
assume that Script > Break on Breakpoints is checked). The path of execution
passes through line 5, so all three commands would do exactly the same thing —
pause at line 5. Breakpoints take priority over everything!

Both Step Over and Step Into can be used not only to resume but also to start execution of a
script. In this case they both pause before the first executable line of the script.

Both Step Over and Step Into have the same options for executing handlers as the
Execute button.

Breakpoints Trace

Script Debugger Help > Develop > Debug > Contents

Trace

Tracing is like executing, only it’s slower — slow enough that you can actually see the blue
arrow moving along the path of execution. To trace:

• Choose Script > Trace (or Option-click the Execute / Resume button in the toolbar).

While tracing, a speed slider appears below the title bar and toolbar of the script window. You
can adjust the tracing speed (from “tortoise” at the left to “hare” at the right) while tracing is
going on.

Tracing is in one sense just a slower form of execution, and will pause for the same reasons
(e.g., because a breakpoint is encountered, or because you issue the Pause command).
However, what’s really happening is that Script Debugger is pausing and resuming after
every executed line. This means that you can see more than the blue arrow moving — you
can also see the call stack growing and shrinking, and the variable values changing, just as
you would if you if were repeatedly issuing the Step Into command.

Trace has the same options for executing handlers as Execute.

Step Call Stack

Script Debugger Help > Develop > Debug > Contents

Call Stack

The call stack is the chain of handler calls currently executing in your script. Execution
typically starts with the script’s run handler (implicit or explicit). Code in this handler can call
another handler, which can call another handler (or the same handler, recursively), and so
on, so that at any given moment during the execution of your code, there is a nest or chain
of handlers leading down from top level to the line currently being executed.

The call stack is shown in the second pane of the result drawer (the word “Stack” appears at
the top).

The stack grows downward. In the illustration above, the script’s implicit run handler told the
script object s to run, s’s implicit run handler called the rename handler, and the rename
handler called the bust handler. Each entry in the stack is called a stack frame.

Stack frames newly added since the last time the script paused are shown in red. In the
illustration above, all the stack frames are in red because this is the first pause since the
script started executing.

Reflecting the call stack back in the script’s text area is a little tricky, because as long as
there are multiple stack frames, we can be paused at more than one place simultaneously.
You can see this happening in this illustration:

The implicit run handler of the main script (line 12) has called s’s implicit run handler, which
has called pad (line 9), and we are now paused inside the pad handler (line 6). Thus there is
a sense in which we are paused at line 6 and line 9 and line 12 simultaneously. To indicate
this, line 6 (the next line we’ll actually execute) has a blue arrow, and the others have a
hollow (white) arrow. The blue arrow shows the current line in the current stack frame.

You can select a line of the call stack pane to explore different stack frames. When you do,
three things will happen:

• Back in the script’s text area, the line where we’re paused in the selected stack
frame is highlighted. So, in the above illustration, if you click the s line in the call
stack pane, then back in the script’s text area, line 9 is highlighted.

• The variables pane changes to reflect the variable values in scope in the selected
stack frame.

• Expressions are re-evaluated against the selected stack frame.

Trace Variables (Debug Mode)

Script Debugger Help > Develop > Debug > Contents

Variables (Debug Mode)

During debugging, the variables pane in the result drawer plays an expanded role. Each time
the script pauses, the names and values of all variables currently in scope are displayed.
Thus, the variables pane is an important tool for understanding what your script is doing. In
the variables pane:

• Variables inherited from the higher AppleScript world come first, and have a blue
background.

• Variables local to the current scope come next, and have a yellow background.

• Variables globally visible to the current scope come last, and have a white
background.

• A variable whose value has changed since the last pause is displayed in red.

What variables are shown depends not only upon the current scope but also on the current
stack frame. Click on a line of the call stack, and the variables listed will change to reflect the
selected stack frame.

There is usually a result each time script pauses, namely the result of the most
recently executed line of code. This is shown in the result pane, not the variables
pane.

Important note: To have local variables appear during debugging, you should explicitly
declare them (with a local statement) in your script. This is especially the case with local
variables in handlers.

Another way to see variable values is through tooltips that appear when you hover
the mouse over an expression in your script. A Debugger preference sets the
conditions under which these appear.

The variables pane is an explorer view, with all the abilities that this entails. For example,
individual lines of the variables pane can be separated into individual viewer windows. If you
leave open a viewer window on a variable that you’re interested in, it will be updated
automatically each time the script pauses.

Furthermore, variables without a “read-only” icon () are editable in the variables pane!
Select a line and press the Return key (or choose Edit Value from the contextual menu).
Using this feature, you can experiment with the behavior of your script as it runs.

Call Stack Expressions

Script Debugger Help > Develop > Debug > Contents

Expressions

An expression is a piece of AppleScript code that has a value. Expressions are evaluated
every time the script pauses.

You create expressions and read their values in the expressions pane, the fourth pane in the
results drawer. You do not have to be in debug mode to create an expression. Expressions
are saved when you save the compiled script.

• Use the + button to create an expression, or you can choose Script > New
Expression.

• A convenient shortcut is Script > Copy To Expressions, which copies the currently
selected text in your script as a new expression.

• To remove an expression, select it and use the - button, or press the Delete key.

• To remove all expressions, choose Script > Clear All Expressions.

• The circular arrow button forces the currently selected expression to be re-
evaluated.

Expressions have certain similarites to the variables pane:

• The expressions pane is an explorer view, and an entry in it can be opened as a
separate viewer window, whose value is automatically updated at each pause.

• An expression whose value has changed since the last pause is shown in red.

• An expression is re-evaluated when you select a different stack frame in the call
stack.

If an expression uses a name that is undefined at the point where we are currently paused
and in the call stack context that is currently selected, its value is marked as undefined.

Note: Evaluating an expression is like running a little one-line script, and even a little one-
line script can do powerful things. An expression that changes a variable’s value, or calls a
handler in your script, can be a valid expression and therefore can have side-effects each
time it is evaluated.

Variables (Debug Mode) Exceptions

Script Debugger Help > Develop > Debug > Contents

Exceptions

An exception is a runtime error, and you can determine whether a runtime error should
cause a pause when debugging, like a breakpoint.

Distinguish between a handled runtime error and an unhandled runtime error. A
handled runtime error is an error that occurs within a try block. It would not
normally cause any break in the action, because AppleScript will just call the on
error clause if there is one, or just abandon the try block and continue execution
after the block. An unhandled runtime error, on the other hand, causes execution to
abort entirely, so there is no issue about pausing there — the script will do more
than pause, it will stop.

To pause at handled runtime errors:

• Choose Script > Break on Exceptions. If the menu item is checked, we will pause
handled runtime errors. Alternatively, there is also an optional toolbar icon you can
add to the script window toolbar; the icon toggles its state to show whether we’re
going to break on exceptions or not.

If Break on Exceptions is checked, a handled runtime error causes a pause when encountered
in debug mode. Execution pauses at the line where the runtime error was encountered,
before the error is thrown, and variables and expressions are evaluated at that point.

To learn what the error was:

• Look at the bottom of the result pane. The error message is displayed there.

• Choose Script > Show Last Error, or click the red arrow at the point where the error
occurred. This summons the normal error dialog. (You can also add a Show Last
Error button to the script window’s toolbar.)

If Break on Exceptions is unchecked, then a handled runtime error does not cause any pause.
However, you can still learn, during any pause after the error is encountered (but before
some other runtime error is encountered), where the error was, by choosing Search > Go to
Last Error, and what the error was, by choosing Script > Show Last Error.

Expressions Code Coverage

Script Debugger Help > Develop > Debug > Contents

Code Coverage

Script Debugger can mark the lines of your script that were actually executed. This can
help you survey the path of execution without tracing or stepping. For instance, you can
easily see whether there are areas of the script that are never being executed. To turn this
feature on or off:

• Choose Script > Show Code Coverage. If the menu item is checked, code coverage
is on, and lines subsequently encountered by the path of execution will be marked in
blue in the gutter (and a small line appears in the vertical scroll bar).

To clear code coverage marks without turning code coverage off:

• Choose Script > Clear Code Coverage.

Code coverage marks are also removed when you start to execute the script.

Exceptions Apple Event Log (Debugging)

Script Debugger Help > Develop > Debug > Contents

Apple Event Log (Debugging)

During debugging, the Apple Event Log window takes on an extra power. The Go To Source
menu item in the window’s contextual menu becomes active. This menu item allows a linkage
between an entry in the log and the line in the script that generated it:

• Control-click on a log entry and choose Go To Source. The script window comes to
the front with the corresponding line highlighted.

Remember also that you can control execution of your script without leaving the Apple Event
log window. Menu items (as well as buttons that you can optionally add to the Apple Event
Log window’s toolbar) let you issue the Execute and Step commands while the Apple Event
Log is frontmost.

Code Coverage External Debugging

Script Debugger Help > Develop > Debug > Contents

External Debugging

External debugging is a mechanism that lets you run a script elsewhere but summon Script
Debugger to debug the script anyway. To use it:

• Save a compiled script while the script is in debug mode. Now trigger that script in
some other application. The script opens in Script Debugger, optionally paused
before the first executable line. Now you can proceed to debug the script in the
normal way.

It makes a difference whether the script is open in Script Debugger when it is triggered. If it
is, then when the script finishes executing in debug mode, it remains open. If it isn’t, then
when the script finishes, it will close.

If the script was not open in Script Debugger beforehand, the name of the script, in
the script window’s title bar, will appear as the name of the host application with
“(Debugging)” appended to it, as a sign that external debugging is proceeding in a
temporary window.

It is often easier to use external debugging and test a script under the conditions in which it
will actually run than to try to simulate those conditions artificially. A good candidate for
external debugging is an applet, a folder action, an Apple Mail rule script, a BBEdit menu
item script, or any script that is to be triggered automatically by some other application.

External debugging is especially useful when parameters are supplied as part of the call that
triggers the script, since it shows you what those parameters are. Moreover, the handler and
parameters are remembered as part of the call history. In subsequent testing, therefore, you
can call the same handler again, yourself, with the same parameters.

Here’s an example, using an Apple Mail rule script. A rule script is structured like this:

using terms from application "Mail"
on perform mail action with messages theMessages for rule theRule

tell application "Mail"
-- do useful things here

end tell
end perform mail action with messages

end using terms from

You can compile that, put it in debug mode, place a breakpoint on the “tell” line, save it,
and then (in Mail) nominate this script as the Run AppleScript action in a Rule. When the rule
is triggered (which you can do by selecting some messages and choosing Message > Apply
Rules), Script Debugger comes to the front, paused at the breakpointed line. Now you can
examine theMessages to see what messages Mail has matched up with your rule’s criteria.
Moreover, the call to perform mail action has been added, with these parameters, to
the event history. You can choose it to make it the current event and run the event handler
repeatedly with the same parameters without switching to Mail.

Here’s another example, using BBEdit’s menu item script mechanism. A BBEdit menu item
script is structured like this:

on menuselect(theMenu, theItem)
return false

end menuselect

Save that, in debug mode, with the name New•Text Document, in ~/Library/Application
Support/BBEdit/Menu Scripts. Leave it open. Now switch to BBEdit and choose File > New >
Text Document. This triggers our script; BBEdit calls our menuselect() handler. And the
call to menuselect(), with the actual parameters, is added to the event history. You can
thus repeat the call, with those same parameters, without switching to BBEdit.

Apple Event Log (Debugging)

Script Debugger Help > Contents

Reference

This is the reference section.

• It surveys Script Debugger’s menus.

• It describes Script Debugger’s preferences.

• It discusses Script Debugger’s windows (in particular, the inspectors).

• It provides a brief glossary and answers some frequently asked questions.

Further Details:

Menus
Preferences
Windows
Glossary
Frequently Asked Questions

Develop

Script Debugger Help > Reference > Contents

Menus

This is a reference section describing all of Script Debugger’s menus.

You can customize the keyboard shortcut for a menu item:

• Open Script Debugger’s Preferences window and go to the Key Bindings pane.

Hint: In some cases where you find yourself using a command often, you might be
able to manage without a keyboard shortcut, because a toolbar item is supplied.
Choose View > Customize Toolbar and examine the available toolbar items. If the
command has a toolbar item, you can drag it into the toolbar, and from then on you
can use that toolbar item as a way of issuing the command. This may prove
sufficiently convenient.

Further Details:

Application Menu
File Menu
Edit Menu
Search Menu
Script Menu
Dictionary Menu
View Menu
Window Menu
Clippings Menu
Scripts Menu
Help Menu

Preferences

Script Debugger Help > Reference > Menus > Contents

Application Menu

For Send Us Email and Check For Updates, see the Help menu.

For Preferences, see the preferences section.

File Menu

Script Debugger Help > Reference > Menus > Contents

File Menu

New Script. Creates a new script window according to your saved defaults, if any.

New Script (No Defaults). Creates a new script window ignoring your saved defaults. By
default, this menu item is shown as an alternative to New Script when you hold down the
Option key.

Open… Brings up a file dialog where you can choose a script file (to open it for editing) or an
application (to open its dictionary).

Open Recent. Lists, and lets you open, recently opened scripts.

Open Selection in Viewer or Open XXX Dictionary.

• Open Selection in Viewer is the same as double-clicking a line in an explorer
view. It creates a separate viewer window for the selected line.

• Open XXX Dictionary is context-sensitive, based on the insertion point in your
script window. It opens the dictionary for the application targeted by the current tell
block.

Open Dictionary. Presents a hierarchical menu where you can open the dictionary of
installed scripting additions, AppleScript, AppleScript Studio, running scriptable applications,
and applications in the known applications list. To open the dictionary of an application not
listed here, choose Application (the second item in this menu).

Recover Script. Recovers the text of a compiled script file, if possible.

Close, Close All. Attempts to close the frontmost window, or all windows. If a script window
is “dirty”, you’ll be offered a chance to save it (or to decline to close it).

Save. Saves the frontmost script. If the frontmost script has never been saved, works like
Save As.

Save As… Brings up a file save dialog, for saving the frontmost script as a new file, possibly
in a different format.

Save A Copy As… Like Save As, except that afterwards the script window shows the old file,
not the newly created file.

Save All. Performs a Save on every “dirty” script window.

Revert To Saved. Opens the frontmost script from its previously saved state, throwing away
any changes made since the last save.

Export. Saves a copy of the script as:

• a run-only script, or

• as a flattened script that incorporates the script’s libraries

Reveal in Finder. Reveals the current document or selection in the Finder:

• If the current document is a saved script file, reveals that file in the Finder.

• If the current window is an application’s dictionary, reveals that application in the
Finder.

• If the current selection is in an explorer view and the selected item is a reference to
a Finder item (a file or folder), reveals that item in the Finder.

Edit With BBEdit. Actually, might say Edit With TextWrangler or Edit With TextMate instead;
it depends which of these applications you have, and which of them is running. Opens the
current script document in the target application, initiating an external editing session.

Description… Brings up a dialog for editing the script’s description.

Libraries… Brings up a dialog for editing the script’s libraries.

Manifest… Brings up a dialog displaying the script’s manifest, the applications and scripting
additions on which it depends.

Script Format. Lets you set the format in which the script should be saved. Only formats
compatible with the script’s present format are enabled; to change to another format, choose
File > Save As.

Application Options. If the script is an applet (script application), lets you set its applet
options.

Page Setup…, Print… Brings up the usual dialogs for printing the frontmost script or
dictionary. You can force a page break in your printed output by including the word
!pagebreak! in a comment in your script (in the output, a page break will be substituted
for this word).

Application Menu Edit Menu

Script Debugger Help > Reference > Menus > Contents

Edit Menu

Undo, Redo. Moves the state of the frontmost script back or forward through the undo list.

Cut, Copy, Paste. The usual commands for moving material on and off the clipboard. By
default, Copy Value appears when you hold down the Shift key (enabled if the selection is a
line of an explorer view).

Paste As String Literal. Pastes the contents of the clipboard, with internal quotation marks,
tabs, and line-end characters escaped, and wrapped in quotation marks (unless the insertion
point is already inside a string literal).

Paste Tell. Inserts a tell block for a running scriptable application or a known application. If
no script window is open, or if you hold down the Option key, creates a new script window
containing the tell block.

Delete. Clears the selected text without moving it to the clipboard. Also works on any
selectable removable entity (an expression, a library, etc.). Clears the contents of the
frontmost tab of the Apple Event Log window if the log window is frontmost.

Complete. Presents a list of possible completions (or the only known completion) for the
AppleScript term that starts to the left of the insertion point. Alternatively, press Esc.

Select All. Selects all text in the current selection context.

Balance. Selects surrounding delimiters or block boundaries, or beeps.

Split Editor Vertically, Split Editor Horizontally, Close Split View, Close All Split
Views. Manipulates splitting of the script window editing area. By default, Close All Split
Views appears when you hold down the Option key.

Shift Left, Shift Right. Removes or adds a level of indentation to the lines containing the
selection.

Comment, Uncomment. Adds or removes a level of comment characters to the start of the
lines containing the selection.

Entab, Detab. Changes leading indentation to tabs or spaces in the lines containing the
selection.

Spelling. Accesses the built-in Mac OS X spell-checking mechanism.

Special Characters… Brings up the system’s Character Palette for entering Unicode
characters.

File Menu Search Menu

Script Debugger Help > Reference > Menus > Contents

Search Menu

Find… Brings up the Find dialog.

Find Again. Finds the contents of the Search For field in the Find dialog, forwards, starting
at the current selection.

Find Again Backwards. Finds the contents of the Search For field in the Find dialog,
backwards, starting at the current selection.

Find Selection. Enters the current selection into the Search For field in the Find dialog, and
finds it, forwards, starting at the current selection.

Find Selection Backwards. Enters the current selection into the Search For field in the Find
dialog, and finds it, backwards, starting at the current selection.

Enter Search String. Enters the current selection into the Search For field in the Find
dialog.

Enter Replace String. Enters the current selection into the Replace With field in the Find
dialog.

Replace. Replaces the current selection with the contents of the Replace With field in the
Find dialog.

Replace & Find Again. Performs a Replace followed by a Find Again.

Replace & Find Again Backwards. Performs a Replace followed by a Find Again
Backwards.

Replace All. Replaces all instances of the contents of the Search For field in the Find dialog
with the contents of the Replace With field.

Look Up Definition. Copies the current selection into the search field of the Look Up
Definition inspector and performs the search.

Go to Line…. Brings up a dialog allowing you to jump to a line by its number.

Go to Current Line. Scrolls to the line that has the blue arrow in debug mode.

Go to Last Error. Scrolls to the line that has the red arrow or stop sign icon, where the last
error occurred.

Go to Next Handler, Go to Previous Handler. Selects in the first line of the handler
definition following or preceding the current selection.

Edit Menu Script Menu

Script Debugger Help > Reference > Menus > Contents

Script Menu

Compile. Compiles the script. To force recompilation even when Script Debugger thinks the
script doesn’t need compiling, choose Recompile (by default, this appears when you hold
down the Option key).

Record. Turns on AppleScript recording mode, so that user actions in recordable applications
are written into the script.

Execute. Runs the script, compiling it first if necessary. Submenus allow certain handlers to
be called individually. When paused in debug mode, becomes Resume, and continues
execution from the paused line.

Trace. In debug mode, starts tracing. Submenus allow certain standard handlers to be called
individually.

Stop. Aborts the running script.

Pause. In debug mode, pauses the script after the line currently being executed.

Step Over, Step Into, Step Out. The step commands, used in debug mode. Submenus
allow certain standard handlers to be called individually.

Enable Debugging. Toggles on or off debug mode.

Show/Hide Result. Opens or closes the result drawer.

Show Result in Viewer. Shows the result pane as a separate viewer window.

Show Last Error… Shows the error dialog for the most recently encountered error.

Show Leaks… Shows the leaks dialog.

Show Code Coverage. Toggles code coverage on or off.

Clear Code Coverage. Removes code coverage marks without toggling code coverage off.

Break on Exceptions. In debug mode, toggles whether or not runtime errors cause a
pause.

Break on Breakpoints. In debug mode, toggles whether or not breakpoints operate at all.

Set/Clear Breakpoint. Creates or removes a breakpoint at the currently selected line.

Set Temporary Breakpoint. Creates a temporary breakpoint at the currently selected line.

Execute to Here. Sets a temporary breakpoint at the currently selected line and starts or
resumes execution.

Trace to Here. Sets a temporary breakpoint at the currently selected line and starts tracing.

Clear All Breakpoints. Removes all breakpoints.

New Expression. Creates a new empty expression, ready for editing.

Copy To Expressions. Creates a new expression by copying the current selection.

Clear All Expressions. Deletes every expression.

Default Target. Sets the implicit target for the script.

Parent Script. Sets the parent of the script to another currently open script.

Search Menu Dictionary Menu

Script Debugger Help > Reference > Menus > Contents

Dictionary Menu

Reload. In the current explorer view, reloads information that’s hierarchically dependent on
the currently selected line. To reload all information in the explorer, choose Reload All (by
default, this appears when you hold down the Option key).

Paste Tell. Inserts into the frontmost script a tell block targeting the application of the
current dictionary or explorer. Hold down the Option key to insert this tell block into a new
script window (Paste Tell (In New Document)). If what’s being displayed in a dictionary
window is a command, the tell block includes a template for issuing that command. If what’s
being displayed is an event, an event handler for that event is inserted instead of a tell block.
If this is a dictionary explorer, the tell block includes a reference to the currently selected
property or element (or element collection).

Launch/Activate XXX. Starts up or brings to the front the application XXX, which is the
application of the current dictionary or explorer.

Quit XXX. Quits the application XXX, which is the application of the current dictionary or
explorer.

Open in New Window. Opens a second window on the current dictionary or explorer.

Back, Forward. Changes the content of the info pane of the current dictionary, moving back
and forward through previously viewed content.

Dictionary View, Explorer View. Switches the current dictionary/explorer window between
dictionary and explorer.

Show/Hide Diagram. Shows or hides the current dictionary window’s diagram drawer.

Show Inherited Properties. Toggles whether or not the inherited properties appear in this
dictionary’s display.

Show Inherited Elements. Toggles whether or not the inherited elements appear in this
dictionary’s display.

Show Extra Documentation. Toggles whether or not extended explanatory content
appears in this dictionary’s display.

Larger Text, Smaller Text. Increases or decreases the size of information in this
dictionary’s display.

Script Menu View Menu

Script Debugger Help > Reference > Menus > Contents

View Menu

Show/Hide Toolbar. Toggles the display of the toolbar for the current window.

Customize Toolbar…. Brings up the dialog for customizing the contents of the toolbar for
the current window type.

Show/Hide Navigation Bar. Toggles the display of the language popup and navigation bar
in the current script window.

Best View, Source View, AEPrint View. Switches between views in the current viewer
pane or viewer window.

Log As Source, Log As AEPrint, Log As Raw (Chevron) Events. Switches between
logging formats for subsequently logged events in the frontmost tab of the Apple Event Log
window.

Log Nothing, Log Log Events, Log All Events, Log All Events & Replies. Switches
between settings for what to log in the frontmost tab of the Apple Event Log window.

Append To Log. Toggles whether or not the Apple Event Log window is automatically erased
each time the script starts over from the beginning.

Show Line Numbers. Toggles visibility of line numbers in the current script window.

Show Tab Stops. Toggles visibility of tab stops in the current script window, viewer pane or
window, or Apple Event Log window tab.

Show Invisibles. Toggles visibility of invisible characters in the current script window,
viewer pane or window, or Apple Event Log window tab.

Show Spaces. Toggles visibility of space characters in the current script window, viewer
pane or window, or Apple Event Log window tab.

Wrap Lines. Toggles line wrapping in the current script window, viewer pane or window, or
Apple Event Log window tab.

Pretty Print. Toggles pretty-printing in the current viewer pane or window, or Apple Event
Log window tab.

Show Raw (Chevron) Syntax. Toggles whether or not terminology is shown as raw Apple
event codes in the current script window or dictionary window.

Dictionary Menu Window Menu

Script Debugger Help > Reference > Menus > Contents

Window Menu

Inspectors. Sets inspector visibility.

Minimize Window. Standard Mac OS X window minimization command.

Zoom Window. Standard Mac OS X window zoom command.

Bring All Windows to Front. Standard Mac OS X command for unlacing the application’s
windows from between those of other applications.

Set Default Script / Viewer Size & State. Saves the current script window or viewer
window as a model for future new script windows or viewer windows, respectively.

Reset Default Script / Viewer Size & State. Reverts to Late Night Software’s default style
for future new script windows or viewer windows.

Apple Event Log. Summons the Apple Event Log window.

The Window menu also lists all open windows. Icons describe the state of each window
(paused, unsaved, what application a dictionary shows, and so forth). The hierarchical
arrangement of these menu items shows dependencies (such as a viewer window generated
from a certain explorer or script). Tooltips show the relevant file’s path.

View Menu Clippings Menu

Script Debugger Help > Reference > Menus > Contents

Clippings Menu

The Clippings menu () accesses clippings. Each menu item represents a file (or folder) in
the Clippings folder.

A file will appear as a menu item. A folder will appear as a hierarchical menu, and the files
inside it will be its menu items. The name of a file (or folder) is the name that will appear in
the menu, except that certain names or part-names are hidden and used for determining the
order of the menu, as follows:

• If a name starts with the prefix ##), where ## is a two-digit number (00-99), these
digits are used to determine the position of this item in the menu and the prefix
does not appear in the menu item’s name.

• A name ##)-*** will appear as a menu separator, again with its order determined
by the two-digit number ##.

Here are the actions you can perform with the menu items in the Clippings menu:

• Choose a menu item to insert that clipping into the current script window.

• Hold down the Option key while choosing a menu item to open that clipping for
editing.

• Hold down the Shift key while choosing a menu item to reveal the clipping file in the
Finder.

Window Menu Scripts Menu

Script Debugger Help > Reference > Menus > Contents

Scripts Menu

The Scripts menu () accesses auxiliary scripts. Each menu item represents a file (or
folder) in the Scripts folder.

Scripts to go in the Scripts menu should live in ~/Library/Application Support/Script
Debugger 4.5/Scripts/. Alternatively, they can live in the top-level /Library/
Application Support/Script Debugger 4.5/Scripts/. (A third possibility is that they
can live in a folder called Scripts in the same folder as the Script Debugger
application, but this option is for historical reasons and is not recommended.)

A file will appear as a menu item. A folder will appear as a hierarchical menu, and the files
inside it will be its menu items. The name of a file (or folder) is the name that will appear in
the menu, except that certain names or part-names are hidden and used for determining the
order of the menu, as follows:

• If a name starts with the prefix ##), where ## is a two-digit number (00-99), these
digits are used to determine the position of this item in the menu and the prefix
does not appear in the menu item’s name.

• A name ##)-*** will appear as a menu separator, again with its order determined
by the two-digit number ##.

Here are the actions you can perform with the menu items in the Scripts menu:

• Choose a menu item to run that script.

• Hold down the Option key while choosing a menu item to open that script file for
editing.

• Hold down the Shift key while choosing a menu item to reveal the script file in the
Finder.

Scripts to go in the Scripts menu may be AppleScript scripts (or scripts in some other OSA
language, if you have any); they may also be shell scripts, applications, or Automator
workflows.

A script in the Scripts menu can drive Script Debugger itself. Such a script does not need to
include a tell block targeting Script Debugger; Script Debugger is implicitly the tell target.

You can debug a script in the Scripts menu, if it is an AppleScript script, by opening it in
Script Debugger and putting it into debug mode. Now when you choose the script from the
Scripts menu to run it, it will pause at a breakpoint if there is one.

If a script initiated from the Scripts menu takes a long time to execute, a progress dialog
appears. This dialog contains a Stop button that you can use to abort the script if you think
something has gone wrong (or if you just don’t feel like waiting — you cannot do anything
else in Script Debugger while a script is running from the Scripts menu).

Clippings Menu Help Menu

Script Debugger Help > Reference > Menus > Contents

Help Menu

Script Debugger Help. Opens this help documentation in Apple’s Help Viewer application.

Script Debugger Getting Started Guide. Opens a narrative introduction to Script
Debugger.

Send Us Email. In your preferred email program, creates a new email message addressed
to Late Night Software.

Check For Updates. Goes online to check whether there is a more recent release of Script
Debugger. A Software Update preference allows you to set this action to be performed
automatically at fixed intervals.

Visit Our Website. In your browser, opens the main Late Night Software web page.

Register Your Copy of Script Debugger. In your browser, opens a Late Night Software
web page where you can register to receive technical support and to be notified of news and
updates.

Script Debugger Web Page. In your browser, opens the main Late Night Software web
page about Script Debugger.

Scripts Menu

Script Debugger Help > Reference > Contents

Preferences

When you choose the Preferences menu item from the application (Script Debugger) menu,
you summon the Preferences window. It has eight preference panes. These pages describe
the options on each pane.

To navigate to any preference pane, click Show All in the toolbar. Now you can click a
pane’s icon to navigate to it.

The toolbar in the Preferences window is customizable. Do not accidentally close the toolbar,
since without it you cannot access the Show All button and you will have no way to navigate
to the different preference panes.

The Factory Defaults button on each pane sets the options in that pane to the Late Night
Software default values.

All changes to preference options take effect immediately — except for the Fonts & Colors
preferences, which have to be set with the Apply button (because in this case, you’re talking
to AppleScript, not to Script Debugger).

Further Details:

Preferences: General
Preferences: Key Bindings
Preferences: Editor
Preferences: Text Substitutions
Preferences: Fonts & Colors
Preferences: Debugger
Preferences: Dictionary
Preferences: Software Update

Menus Windows

Script Debugger Help > Reference > Preferences > Contents

Preferences: General

The General preferences pane collects a number of options having mostly to do with Script
Debugger’s startup behavior and how Script Debugger opens and saves script files.

On Startup:

Remember open scripts. If checked, then when Script Debugger quits, all open scripts are
remembered and will be reopened automatically the next time Script Debugger starts up.

Remember open dictionaries. If checked, then when Script Debugger quits, all open
dictionary windows are remembered and will be reopened automatically the next time Script
Debugger starts up.

Create new script if nothing else is open. If checked, then when Script Debugger starts
up, if no other window opens, a new script window will be created.

On Reopen:

Create new script if nothing else is open. If checked, then when Script Debugger gets a
Reopen event, if no window is open, a new script window will be created. A Reopen event is
sent, for example, when you click on Script Debugger’s Dock icon (but not when you press
Command-Tab to switch to Script Debugger).

Saving:

Script Debugger is always creator vs. Keep original creator vs. No creator. The
question here is, when you open a saved script file in the Finder, what application should
open the file.

Keep backup files. If checked, then just before saving an already existing file, a copy of the
currently saved version of the file will be saved as Filename~ (the same name as the file,
plus a tilde character).

Opening:

Remember Result drawer state. If checked, then when Script Debugger opens a script
file, it opens the script’s result drawer if the file was previously saved by Script Debugger
with the drawer open. Otherwise, saved script files will be opened with their result drawer
hidden.

Warn when applications may be launched. If checked, then when Script Debugger
begins opening a script file, it puts up a “Launch Applications?” dialog if continuing to open
the file might cause AppleScript to launch an application targeted in the script.

Mac OS Settings:

Respond to applescript:// URLs in web pages. The applescript protocol permits a
hyperlink (in a web browser, a PDF document, and so forth) to contain AppleScript code, to
be displayed by a script editor application when the link is clicked. (The script editor
application does not automatically run the code, as that would be a security violation.) By
default, the protocol sends its messages to Apple’s Script Editor, and Apple provides no
interface for changing this target. This checkbox is provided so that you can switch the
routing of the protocol to Script Debugger.

Default editor for OSA scripts, applets, and droplets. Mac OS X may ignore a file’s
creator code and determine from the filename extension what application opens the file. This
checkbox lets you associate the relevant filename extensions (.scpt and so on) with Script
Debugger. (It also causes Script Debugger to be the editor that responds to the Edit button
in an applet’s runtime error dialog.)

In theory, you could accomplish the same thing by choosing Script Debugger in the
Default Script Editor popup menu of Apple’s own AppleScript Utility. However, the
AppleScript Utility’s behavior may be buggy — for example, it may incorrectly
associate all text files with your chosen default script editor — so its use is not
recommended.

Preferences: Key Bindings

http://www.apple.com/applescript/archive/scripteditor/12.html
http://www.apple.com/applescript/archive/scripteditor/12.html

Script Debugger Help > Reference > Preferences > Contents

Preferences: Key Bindings

Script Debugger permits you to customize (change) the keyboard shortcut for any menu
item, including Clippings and Scripts. The Key Bindings preferences pane is where you do
that.

The table lists all of Script Debugger’s menus and menu items, in hierarchical outline format.
By clicking the disclosure triangles (or by double-clicking a line), drill down to the menu item
whose keyboard shortcut you’d like to alter. Click the Set button, or double-click the menu
item listing. The Keystroke dialog opens.

With the Keystroke dialog showing, type a keyboard shortcut. It must involve at least the
Command key or the Control key, or be a Function key (F1, F2, etc., plus Home, Page Up,
and so on). It may additionally involve any combination of modifier keys (Shift, Control,
Option, Command). Script Debugger warns you if you type a keyboard shortcut that is
already in use by another menu item.

To remove an existing keyboard shortcut from a menu item, so that that item has no
keyboard shortcut, select it and click Clear.

Preferences: General Preferences: Editor

Script Debugger Help > Reference > Preferences > Contents

Preferences: Editor

The Editor preferences pane collects a number of options having mostly to do with Script
Debugger’s behavior as you type, as well as certain appearance settings in script windows
and other windows.

Editing Options:

Auto indent. If checked, then when you create a new line in a script window by typing
Return, its indentation will match the indentation of the preceding line. Otherwise, the new
line will start at the left edge of the window. (AppleScript will indent properly in any case
when the script is compiled.)

Auto-pair delimiters ([{" "}]). If checked, turns on Script Debugger’s auto-pairing
feature.

Auto-close AppleScript blocks (end tell, etc.). If checked, turns on Script Debugger’s
auto-closing feature.

Paste Object References as nested Tell blocks. If checked, then when pasting an object
reference (such as you might obtain by copying from an explorer view), what’s pasted is a
nest of tells. If unchecked, what’s pasted is a single line of ofs. Hold down the Option key
as you choose Edit > Paste to reverse the behavior from your preference here.

Share Find string with other applications. Cocoa maintains a “Find panel pasteboard”
where all applications can share their Search For text. This means that if you search for text
in one application (say, Safari) and then switch to another application (say, TextEdit) and
bring up the Find dialog, the very same search text is present. This behavior can be
beneficial or annoying, so this checkbox lets you turn this feature on or off.

Synchronize split-view appearance. If checked, then changing a view setting in a split
view pane changes the same setting for the other panes of the same script. Hold down the
Option key as you change a view setting to reverse the behavior from your preference here.

Balance includes enclosing ([{ }]) delimiters. If checked, then the balance command
selects everything including the delimiters surrounding the starting selection; otherwise, it
selects everything enclosed by the delimiters surrounding the starting selection.

Auto-hilite opening ([{ when typing closing }]). If checked, then when you type a right
delimiter, the corresponding left delimiter is momentarily highlighted (and if there isn’t one,
Script Debugger beeps).

• Hilite delay. Sets the length of time during which the momentary highlighting is
present.

• Scroll if necessary. If checked, Script Debugger will scroll backwards if necessary
to reveal the highlighted left delimiter.

New Line Character:

Sets the line-end character that is typed in a script when you press the Return key.

Tab Width:

Sets the number of spaces to which a tab character should be equivalent. This is how far a
nested block is indented in a compiled script, and how many spaces a tab character is
converted to when you choose Edit > Entab.

Table Of Contents Options:

Sort table of contents menu alphabetically. If checked, the table of contents menu is
sorted alphabetically. Otherwise, its order is the order in which things appear in the script.
Hold down the Shift key while summoning the table of contents menu to see it sorted in the
order opposite to your preference here.

Show navigation bar location when scrolling. If checked, then as you scroll a script
window, a tooltip appears showing the line number of the line currently appearing at the top
of the window, along with other navigation bar information about that line.

Edit > Comment Inserts:

Sets the string prefixed to the start of each selected line by the Edit > Comment command.

Background color:

Sets the background color for script windows, viewers, and the Apple Event Log window.

Cursor color:

Sets the color of the thin insertion point cursor for script windows, viewers, and the Apple
Event Log window. (To set the color of a text selection comprising one or more characters,
use System Preferences > Appearance > Highlight Color.)

AEPrint color:

Sets the color of AEPrint text in viewers and the Apple Event Log window (as well as a few
types of Best text whose color is not set by the Fonts & Colors Preferences).

Highlight line containing insertion point. If checked, the entire line in a script window
containing the insertion point is banded in yellow for greater visibility.

Highlight block when mouse hovers in gutter. Turns on or off the block highlighting
feature.

Show compiled state in gutter. If checked, then a script that needs compilation has a
stripy pattern in its gutter.

Font sizes:

Result/Logging. Sets the font size for viewers, explorers, the call stack, expressions,
logging entries, and the browser at the top of the dictionary window. (The font size for script
windows is a Fonts & Colors preference.)

Inspectors. Sets the font size for inspectors.

Preferences: Key Bindings Preferences: Text Substitutions

Script Debugger Help > Reference > Preferences > Contents

Preferences: Text Substitutions

The Text Substitutions preference pane is where you manage text substitutions.

Automatic Substitution:

Enabled. If checked, the substitution feature is turned on.

If substitution is turned on, then when you type an enabled “Replace” column entry followed
by a non-word character (such as a space or a Return), the corresponding “With” column
entry will be substituted for it.

Preferences: Editor Preferences: Fonts & Colors

Script Debugger Help > Reference > Preferences > Contents

Preferences: Fonts & Colors

The Fonts & Colors preferences pane has to do with AppleScript formatting, that is, the
pretty-printing of compiled scripts. This facility is provided by AppleScript (as part of the
decompilation process), not by Script Debugger. This preference pane thus accesses
AppleScript’s preferences.

You can select multiple lines of the table and change their font or color all at once.

Changes are not sent to AppleScript until you click the Apply button. When you do, any
compiled scripts that are open now, as well as any compiled script files that you open or
create in the future, will take on the formatting you have specified. To cancel (changing your
mind without applying your changes), switch to another pane, or close the window.

Preferences: Text Substitutions Preferences: Debugger

Script Debugger Help > Reference > Preferences > Contents

Preferences: Debugger

The Debugger preferences pane collects a number of options having to do with Script
Debugger’s behavior when running and debugging scripts.

Debugging Options:

Pause script when external debugging begins. If checked, then when external
debugging starts (that is, a script saved in debug mode starts to run in some other context),
Script Debugger will pause before the first executable line of the script.

Restore active application when stepping/continuing. If checked, then when you
resume execution after a pause, Script Debugger switches to the application that was active
before the pause.

(This preference is ignored if the script is being controlled from Script Debugger’s
Dock menu.)

Show expression tooltips. If checked, then when you hover the mouse over text in a script
window, the AppleScript expression under the mouse will be evaluated and its value shown in
a tooltip. In some cases, it will help to select the desired expression first and then hover the
mouse over it. For your safety, Script Debugger prevents evaluation of an expression if
evaluating it takes a long time or might have major side effects like deleting or altering an
object (such an expression will generate no tooltip).

• Tooltip delay. Sets the delay between the time when the mouse hovers over an
AppleScript expression and the time when the expression is evaluated.

• Show only while debugging. If checked, then these tooltips appear only when the
script is paused in debug mode.

• Include tell context. If checked, then if there is a tell context, it is included at the
start of the tooltip (as in the above illustration — if this option were not checked,
everything up to the colon would be absent).

Bring Script Debugger to foreground when scripts pause. If checked, then when
pausing in debug mode, Script Debugger will come to the front.

Bring Script Debugger to foreground when scripts end. If checked, then any time a
script finishes executing, Script Debugger comes to the front.

(This preference is not limited to debugging. It is ignored if the script is being
controlled from Script Debugger’s Dock menu.)

Show result when scripts pause or end. The question here is what should happen with
regard to the display of the result when a result is produced.

(This preference is not limited to debugging.)

Script Error Actions:

Bring Script Debugger to foreground. If checked, then Script Debugger comes to the
front when it puts up a runtime error dialog. Otherwise, Script Debugger bounces the
notification icon in the Dock.

Beep. If checked, then Script Debugger beeps when it puts up a runtime error dialog.

Preferences: Fonts & Colors Preferences: Dictionary

Script Debugger Help > Reference > Preferences > Contents

Preferences: Dictionary

The Dictionary preferences pane collects a number of options having to do with the
appearance and behavior of dictionary windows and explorer views.

Opening:

Governs what should happen when you open a dictionary window. The issue here is that a
dictionary window has two panes: the dictionary and the explorer. Which one should appear
when the window opens? Your choices are:

• Show Dictionary. The Dictionary pane appears.

• Show Explorer. The Explorer pane appears.

• Remember Explorer/Dictionary state. The pane that appears is the pane that
was showing when the dictionary window for this application was closed previously.

Explorer Options:

Scan for elements if count fails. Some badly behaved applications do not implement
count properly, so Script Debugger can’t learn how many elements there are, and can’t
populate the hierarchical display of those elements. (Eudora is a notorious case in point.) In
such cases, if this option is checked, Script Debugger will ask for elements by index until a
runtime error is encountered in order to discover how many there are.

Show list and record items for expanded elements. If checked, lists and records will be
expandable in the explorer in certain rare cases where they normally would not be (most of
the time, they will be anyway).

Show contents of list and records. Controls the “value” shown for lists in the explorer. If
unchecked, the value tells the size of the list. If checked, the value is the literal list, i.e. curly
braces containing items separated by commas.

Show description tooltips. If checked, tooltips appear when the mouse is hovered over
items in the left column of the explorer. These tooltips are the comment from the dictionary
describing the entity in question.

Show value tooltips. If checked, tooltips appear when the mouse is hovered over items in
the right column of the explorer. These tooltips are the comment from the dictionary
describing that class or enumeration. Not every item in the explorer has such a comment, in
which case there is no tooltip.

Outline Options:

Show hidden items. If checked, hidden items are displayed in the dictionary. An example is
the computer command in StandardAdditions. Hidden items are generally hidden by the
application’s developer for a good reason, and showing them is not recommended.

Dictionary Caching:

Cache generated dictionaries. If checked, Script Debugger maintains cached copies of
application dictionaries, for faster display. If unchecked, Script Debugger may be
considerably slower when it needs to open or search a dictionary. Most users should not need
to uncheck it. Concerning why you might want to uncheck it, or why you might want to click
Clear Cache, read here.

Preferences: Debugger Preferences: Software Update

Script Debugger Help > Reference > Preferences > Contents

Preferences: Software Update

The Software Update preference pane lets you specify whether Script Debugger should
periodically go online to check for a more recent version of itself, and if so, how often. You
can also click the Check Now button to check manually (the same functionality is available
from the Help menu).

Preferences: Dictionary

Script Debugger Help > Reference > Contents

Windows

Script Debugger’s window types may be categorized as follows:

• Script windows

• Dictionary windows

• Viewer windows

• The Apple Event Log window

• Inspectors

• The Preferences window

Details about inspectors are provided here.

Further Details:

Inspectors

Preferences Glossary

Script Debugger Help > Reference > Windows > Contents

Inspectors

Inspector windows are summoned from the Window > Inspectors menu. They have several
features in common:

• They float (they are in front of all other windows), and they are utility windows (they
vanish when Script Debugger is in the background).

• They have two states, expanded or contracted. Click an inspector’s title bar to toggle
its state, which is also reflected by a disclosure triangle. When contracted, an
inspector consists of just its title bar. This allows the inspector to be positioned
unobtrusively.

• They can be docked together, and separated again. To dock one inspector to
another, drag it to a position just above or below the other inspector. It will snap
into place, and the inspectors will share a single close button, showing that they are
docked together.

Docked inspectors can be expanded or contracted separately without losing the
docked arrangement. Otherwise, they act like a single window. If you drag the
topmost inspector’s title bar, the whole docked set is repositioned. If you close
(dismiss) the topmost inspector, the whole docked set is closed. If you summon an
inspector that has been dismissed as part of a docked set, the whole docked set
appears. To separate docked inspectors, drag the lower inspector’s title bar.

The above illustration shows three inspectors, contracted and docked together.

To summon an inspector:

• Choose Window > Inspectors and the desired inspector.

To close (dismiss) an inspector:

• Click the close button in its title bar. Alternatively, you can hide all inspectors by
choosing Window > Inspectors > Hide Inspectors. In this case, you can summon all
inspectors that were hidden, by choosing Window > Inspectors > Show Inspectors.

To restore inspectors to the default arrangement:

• Choose Window > Inspectors > Reset Inspector Locations.

Further Details:

Known Applications Inspector
Look Up Definition Inspector
Tell Context Inspector
Clippings Inspector
Scripts Inspector
Windows Inspector

Script Debugger Help > Reference > Windows > Inspectors > Contents

Known Applications Inspector

The Known Applications inspector lists applications that Script Debugger has “met” in various
ways. This list appears in several places in the interface — for example, in the File > Open
Dictionary menu and the Edit > Paste Tell menu. From the Known Applications inspector, you
can manipulate the list, as well as perform the two main actions that the list is good for.

• To open an application’s dictionary, select it and click the Dictionary button, or
double-click the application’s name.

• To insert a tell block targeting an application, select it and click the Paste Tell
button. Hold down the Option key to create a new script window at the same time.

Alternatively, drag the name of an application from the Known Applications
inspector into a script window.

• To learn an application’s location, hover the mouse over it to see the tooltip.

• To show an application in the Finder, select it and choose Reveal Application
from the tool popup in the upper right corner (or the contextual menu).

• To remove an application from the list, select it and choose Forget Application
from the tool popup (or use the contextual menu). (You can also choose Forget All
Applications to empty the list.)

• To add an application manually to the list, choose Add Application from the tool
popup (or the contextual menu).

• To toggle the visibility of icons in the list, choose Hide / Show Icons from the
tool popup (or the contextual menu).

The list also provides access to AppleScript commands that you can use in your script when
targeting each application. To see them, click the disclosure triangle next to the application’s
name. Then:

• To look up a command’s definition in the dictionary, select it and click the
Dictionary button, or double-click the command.

• To insert a command template into your script (including a tell block, if
necessary), select the command and click the Paste Tell button (or drag the
command from the Known Applications inspector into a script window). Hold down
the Option key to create a new script window at the same time.

You may be curious about how the Known Applications list is automatically
populated. The answer is a little complicated, but here’s the short version. An
application is added to the list automatically:

• When Script Debugger is first installed (it looks on your computer
for certain “well known” scriptable applications, and adds them to
the list if they are present).

• When an application’s dictionary is explicitly opened.

• When an object specifier is explored (so, for example, when you
target an application in a script and it returns an object as the
script’s result).

• When a tell block targeting that application is detected in your code.

Running a script targeting an application might not add that application
automatically to the list. The reason is that AppleScript and Script Debugger are
two different entities, so AppleScript can run a script without Script Debugger
seeing and analyzing the contents of that script.

Look Up Definition Inspector

Script Debugger Help > Reference > Windows > Inspectors > Contents

Look Up Definition Inspector

The Look Up Definition inspector is discussed here.

Known Applications Inspector Tell Context Inspector

Script Debugger Help > Reference > Windows > Inspectors > Contents

Tell Context Inspector

The Tell Context inspector is a live explorer view, showing the current elements and
properties of the application or object targeted at the point where you are working in your
script (the current tell context).

The Tell Context inspector drills down along with your script into successively deeper levels of
tell context. For example, consider this script:

tell application "BBEdit"
tell document 1

get word 1
end tell

end tell

If you select “document” in that script (in the second line), the Tell Context inspector shows
the elements and properties of BBEdit (the application object). If you select “word” (in the
third line), the Tell Context inspector shows the elements and properties of document 1 of
application "BBEdit".

If you open the Tell Context inspector and it is empty or disabled or otherwise looks wrong,
try switching explicitly to the window that you want inspected, and if necessary, compile it.
This should wake up the Tell Context inspector and get it in synch with your activities in the
script window.

The Tell Context inspector has the same basic functionalities as a dictionary explorer, but
some of them are accessed a little differently because this is a floating palette (menus in the
menu bar don’t apply to it, and keystrokes don’t target it):

• To insert a reference to an attribute into the frontmost script, click the Paste
button. You can also drag from the inspector into your script.

• To open the dictionary for the currently targeted application (its name appears at
the top of the inspector), click the Dictionary button.

• To reload the data for the currently selected line, click the Reload button. Hold
down the Option key to reload all the data in the inspector.

• To edit the value of a property, choose Edit Value from the contextual menu.

• To generate a separate viewer window for a value, choose Open Viewer from
the contextual menu.

Other explorer functionality works normally.

Look Up Definition Inspector Clippings Inspector

Script Debugger Help > Reference > Windows > Inspectors > Contents

Clippings Inspector

The Clippings inspector is a convenient way to work with clippings.

• To insert a clipping, double-click it, or select it and click the Paste button.

• To edit a clipping, hold down the Option key and double-click it, or select it click
the Edit button.

• To show a clipping file, hold down the Shift key and double-click it, or select it and
choose Reveal In Finder from the tools popup (or the contextual menu).

Tell Context Inspector Scripts Inspector

Script Debugger Help > Reference > Windows > Inspectors > Contents

Scripts Inspector

The Scripts inspector is a convenient way to work with scripts from the Scripts menu.

• To run a script, double-click it, or select it and click the Run button.

• To edit a script, hold down the Option key and double-click it, or select it and click
the Edit button.

• To show a script file, hold down the Shift key and double-click it, or select it and
choose Reveal In Finder from the tools popup (or the contextual menu).

Clippings Inspector Windows Inspector

Script Debugger Help > Reference > Windows > Inspectors > Contents

Windows Inspector

The Windows inspector gives access to all open windows. In some ways it’s like the Window
menu — it uses the same icons to reflect a window’s status, for example — and at the same
time it permits a number of fundamental operations that can also be performed from
elsewhere.

Thus, you can Close, Save, Print, Run, and Stop a window. Additionally:

• To close all windows, hold down the Option key as you click Close.

• To trace instead of running, hold down the Option key as you click Run.

• To reveal a script window’s file in the Finder, select it and choose Reveal In
Finder from the tools popup (or the contextual menu).

Scripts Inspector

Script Debugger Help > Reference > Contents

Glossary

This section consists of a series of short pages explaining some words and concepts used in
this help document.

Further Details:

Glossary: Bundle
Glossary: Bytecode
Glossary: Compiled Script File
Glossary: Dictionary
Glossary: Fork
Glossary: Object Model
Glossary: Scripting Addition
Glossary: Sdef
Glossary: Tell Context

Windows Frequently Asked Questions

Script Debugger Help > Reference > Glossary > Contents

Glossary: Bundle

A bundle (or package) is a file system entity in Mac OS X whose key characteristic is that
although it is a folder, it is portrayed in the Finder as a file. Bundles are useful because they
can contain files and folders inside them which the user doesn’t see or even know about. In
fact, the user is generally unconscious of the fact that a bundle is a bundle. Just to give a
simple example, a Mac OS X-native application is a bundle.

Opening a bundle in the Finder by double-clicking it is like opening an application or
document - not like opening a folder. If you want to open a bundle as a folder, control-click
the bundle in the Finder, and choose Show Package Contents from the contextual menu.

Inside a bundled compiled script or bundled application, when you Show Package Contents, is
a Contents folder. Inside that is a Resources folder. That is where you can keep files that
need to travel with the bundle.

Do not touch any of the other files and folders inside the Resources folder, or
disturb anything else in the bundle. Doing so can destroy the viability of the bundle.
Do not modify the bundle contents while editing the script, as this may prevent
saving of the script or have other unwanted consequences.

A bundled compiled script or a bundled application can refer to a file inside its Resources
folder using the path to resource scripting addition command.

Every time you save a bundled compiled script or bundled application, the contents
of the Resources folder are duplicated and saved anew, as a safety measure. This
will alter the modified date of your resource files.

Glossary: Bytecode

Script Debugger Help > Reference > Glossary > Contents

Glossary: Bytecode

AppleScript code is compiled into bytecode, meaning that, roughly speaking, the nouns and
verbs of the original text are translated into a sort of compressed, coded equivalent, called
tokens. These tokens are meaningful to the AppleScript runtime engine (and illegible to
everyone else). The runtime engine interprets the bytecode, parsing whatever tokens it
meets along its path of execution, accumulating them into chunks, and translating these
chunks further, as necessary, in order to execute them.

The implication for you, the AppleScript programmer, is that in its compiled form, a script is
illegible. So why are you able to read a compiled script file? It’s because AppleScript
decompiles the bytecode, translating the tokens back into their English-like form. If the script
targets an application, this decompilation requires the application’s dictionary. This is one
reason why things can go wrong when you attempt to open a compiled script. (Script
Debugger may be able to help in such a situation by letting you open the script as text.)

Actually, a compiled script file contains not only bytecode but also some further information
(such as variable names) needed to decompile the tokens. In a run-only script, this further
information is not present, which is why the script cannot be decompiled (and therefore
cannot be read by a human being).

Glossary: Bundle Glossary: Compiled Script File

Script Debugger Help > Reference > Glossary > Contents

Glossary: Compiled Script File

The fundamental AppleScript file format is the compiled script file. It consists of bytecode,
not the original text. It also can maintain other information, such as the persistent values of
top-level entities (mostly properties, globals, and script objects) and certain context
information. A compiled script file can be executed directly, with very little delay (because
there is no need to compile). Many environments that can run scripts expect a compiled
script file.

When you run a compiled script in Script Debugger and then save (without editing
further), values of top-level entities are saved as well.

The life of the AppleScript programmer is made more complicated by the fact that compiled
script files now come in a variety of formats. Not all of these are compatible with every
system or every script-editing or script-running environment.

Also, a compiled script can have difficulty opening if a required application or scripting
addition is missing. If the script was saved with Script Debugger, you may still be able to
open the script as text.

Glossary: Bytecode Glossary: Dictionary

Script Debugger Help > Reference > Glossary > Contents

Glossary: Dictionary

AppleScript’s real power and purpose lies in communicating with scriptable applications,
which provide powers that AppleScript lacks. In order that you, the AppleScript programmer,
may harness its powers, a scriptable application extends the vocabulary of the AppleScript
language. This extended vocabulary is called a scriptable application’s terminology. A
dictionary is the means by which a scriptable application or scripting addition lets you (and
AppleScript) know how it extends AppleScript’s vocabulary.

The dictionary translates between two forms of terminology — the English-like terms, which
you use in your script, and the raw Apple event codes, which AppleScript uses to construct
Apple events when communicating with a scriptable application.

When you write a script using English-like terms, the dictionary is used to translate them into
raw Apple events to be sent to scriptable applications.

In a compiled script file, the raw Apple events are encoded directly into the bytecode. In
order to open the compiled script file and decompile it, the dictionary is used to translate the
raw Apple events back into English-like terms. This is why AppleScript may have trouble
opening a script in the absence of a required dictionary.

Under certain circumstance, a compiled script may open but display some of its raw Apple
events (as four-letter codes surrounded by chevrons) instead of the English-like terminology.
And, as a power user feature, Script Debugger lets you deliberately display raw Apple events
instead of English-like terminology.

At any given moment in a script there are several sets of terminology visible at once —
variable names used in the script, terms from the dictionary of the targeted application,
terms from scripting additions, terms from AppleScript’s own dictionary. If the script chooses
its terms unwisely, or if the visible dictionaries use the same terminology in different ways,
terminology clash can occur. Terminology clash can result in a script that won’t compile or
run, or it might result in a script that compiles and runs, but behaves mysteriously.

Script Debugger helps you track down terminology clash by letting you view raw Apple event
codes in your script, in the Apple Event Log window, and in dictionaries, and by letting you
search for terminology in all visible dictionaries at once.

If you use an application with an ‘aete’ dictionary that allows the dictionary to be
extended through plug-ins (such as QuarkXPress or InDesign), read the discussion
of Script Debugger’s dictionary caching mechanism.

Glossary: Compiled Script File Glossary: Fork

Script Debugger Help > Reference > Glossary > Contents

Glossary: Fork

In the earliest days of the Macintosh file system, a structure was devised whereby a file could
have two pieces, the data fork and the resource fork. The data fork was a single thing, and
was just for data (like the text of a TeachText / SimpleText file). The resource fork was for
secondary information, and could contain many resources, accessible by category and name
or number, as in a kind of miniature database (so, for example, style information in a
TeachText / SimpleText file).

When Mac OS X was introduced, Apple undertook a concerted effort to deprecate the
resource fork, because it wasn’t a standard Unix file system thing (in fact, a Macintosh file
moved to another file system, such as Windows or true Unix, will usually lose its resource
fork). As part of this effort, a new format for compiled script files was devised, where the
bytecode was kept in the data fork instead of the resource fork.

Ironically, Apple has recently realized that resource forks are a good thing (because they
provide a place to put file metadata) and has reversed course — they’ve modified the file
system so that a file can now (starting with Tiger, Mac OS X 10.4) have any number of extra
forks.

Glossary: Dictionary Glossary: Object Model

Script Debugger Help > Reference > Glossary > Contents

Glossary: Object Model

A scriptable application can define classes, roughly comparable to the “things” that constitute
its world. (For example, iTunes defines a playlist class and a track class, and the Finder
defines a folder class and a file class.) Classes can have properties and elements, whose
value type can be a class. Thus, in theory, for a given application, there is a hierarchical
relationship of ownership—of containment—amongst its classes. (For example, in iTunes, a
playlist “has” tracks, and in the Finder, a folder “has” files.)

In theory, this relationship can be expressed as a “tree”, a hierarchical structure starting with
the application itself, and containing every object in the application. Indeed, this tree is vital
to your use of AppleScript to communicate with a scriptable application, because it is why
you are able to refer to an object in the first place. (For example, you can speak to the Finder
of file 1 of folder "Mannie" because the Finder “has” folders and a folder “has”
files.) This tree of the objects that you can refer to is the application’s object model.

Script Debugger exposes an application’s object model in two places:

• In a Dictionary window, the diagram drawer shows you the application’s
containment hierarchy as a tree.

• In a Dictionary window and in other places, an application’s actual objects are
displayed hierarchically through an explorer view.

I say “in theory” because in reality things are not so simple. The containment
hierarchy is describing what’s possible, not what’s real, and therefore infinite
recursions and circularities can result when you try to express it as a simple tree.
For example, in the Finder, in real life there could never be an infinite depth of
folder containment. In the containment hierarchy diagram, however, you can keep
opening “folder” entries to get “folder” entries inside them, and so on, forever and
ever (or until you get bored), just because as a theoretical matter, it’s always true
that a folder can contain a folder. If this confuses you, and you’d rather see the
object model as it exists in reality, use the explorer.

Glossary: Fork Glossary: Scripting Addition

Script Debugger Help > Reference > Glossary > Contents

Glossary: Scripting Addition

A scripting addition is a compiled-code resource that implements additional AppleScript
language terminology and commands. AppleScript loads any scripting additions that it finds
in the ScriptingAdditions folder (in /System/Library, in /Library, or in your user Library), and
the terms and commands implemented in them become effectively part of the language.

Because of the nature of this mechanism, you don’t have to be in any application’s tell
context in order to use a term defined by a scripting addition. Instead, a scripting addition’s
terms are simply “part of the language”. For example, to learn today’s date, you just say
current date, anywhere. You do not — indeed, you cannot — explicitly target a scripting
addition.

Nevertheless, everything in AppleScript works through dictionaries, so every scripting
addition has a dictionary. Script Debugger collects all the dictionaries of all loaded scripting
additions into a single dictionary display, called “Scripting Additions”.

Because scripting addition terminology is always available, no matter what application you
are talking to (or even if you are talking to no application), Script Debugger makes scripting
addition terms automatically part of the tell context.

Scripting additions are a notorious source of terminology clash.

Running a script in the absence of a scripting addition on which the script depends will
probably result in a mysterious runtime error. Opening such a script will result in the
appearance of raw Apple event codes in the script (Script Debugger tries to help track down
the source of the problem, but it isn’t easy because the name of the missing scripting
addition doesn’t appear in the code, since scripting additions are not targeted).

Glossary: Object Model Glossary: Sdef

Script Debugger Help > Reference > Glossary > Contents

Glossary: Sdef

An “sdef” (pronounced “ess-deaf”, and standing for “scripting definition”) is a new dictionary
format, starting in Tiger (Moac OS X 10.4). Script Debugger takes advantage of this new
format. Relatively few applications actually use this new format, though, so Script Debugger
translates the old format (called an ‘aete’) into the new format before presenting the
dictionary to you. As the new format comes into more common use, it will be possible for
application authors to provide more accurate, informative dictionaries.

If you use an application with an ‘aete’ dictionary that allows the dictionary to be
extended through plug-ins (such as QuarkXPress or InDesign), read the discussion
of Script Debugger’s dictionary caching mechanism.

Glossary: Scripting Addition Glossary: Tell Context

Script Debugger Help > Reference > Glossary > Contents

Glossary: Tell Context

The purpose of AppleScript is to communicate with scriptable applications. The linguistic
construction commonly used to perform such communication is the tell block. For example:

tell application "TextEdit"
activate
set word 1 of document 1 to "Hello"

end tell

In that code, the indented lines are within a tell block targeting TextEdit. Thus, TextEdit is
their tell context.

Nested tell blocks can narrow the tell context still further. For example:

tell application "TextEdit"
activate
tell document 1

set word 1 to "Hello"
end

end

In that code, the set line’s tell context is document 1 of TextEdit.

Script Debugger watches as you work, and knows what the tell context of the current
selection or insertion point is. This knowledge is fundamental to certain Script Debugger
features. For example:

• The Tell Context inspector explores the elements and properties of the targeted
application relative to the current tell context.

• The Look Up Definition inspector can search in the current tell context. So, if you
select “word” in the above code and choose Search > Look Up Definition, and if the
Look Up Definition inspector is set to Search in Tell Target, Script Debugger will
search for the term word in TextEdit’s dictionary.

• The File > Open XXX Dictionary menu item knows what dictionary to open based on
the tell context.

The tell context itself may depend upon the value of a variable at a given moment. Script
Debugger handles this situation correctly, though the results may surprise you. For example:

on doTell(x)
tell application x

get window 1
end tell

end doTell
doTell("Finder")

Suppose this script is paused (in debug mode) at the line get window 1. What should the
tell context be if we click in that line? Well, there are two stack frames: the doTell handler
call, and the top level of the script (the implicit run handler). In the stack frame of the
doTell handler call, x has a value and there is a tell context (the Finder). But in the stack
frame of the top level of the script, x has no value and there is no tell context (and the Tell
Context inspector will report “no selected tell block”). So the tell context depends upon the
selected stack frame as well as the current selection.

Glossary: Sdef

Script Debugger Help > Reference > Contents

Frequently Asked Questions

This section provides answers to some questions that were too technical or too miscellaneous
to incorporate into the main discussion.

Note: By its very nature, information in this section may be volatile. For the latest facts,
check at Late Night Software’s web site.

Further Details:

What’s Installed Where?
Is Script Debugger’s AppleScript the Same as Script Editor’s?
What’s The Big Deal With Line Endings?
Why Do Applications Open Spontaneously?
Hey, Script Debugger Changed My Formatting!
Why Doesn’t My Script Debug Properly?
How Do I Script Script Debugger?

Glossary

http://www.latenightsw.com/sd4/index.html

Script Debugger Help > Reference > Frequently Asked
Questions > Contents

What’s Installed Where?

Script Debugger is a good Mac OS X citizen, and does not heedlessly install files in places
where it’s not supposed to. Still, it does install files in a variety of locations, and you might
wish to know where these are and what the files do. So here’s a list.

~/Library/Components
Script Debugger installs Script Debugger.component here. It implements debugging,
by means of an OSA language which you can see listed in the Language popup menu
in any Script Debugger script window (or any Script Editor script window, for that
matter).

~/Library/Caches/Script Debugger 4.5
Script Debugger maintains caches of application dictionaries here. These caches mean
that Script Debugger can open and access dictionaries much more quickly.

~/Library/Application Support/Script Debugger 4.5
The Clippings folder is where Script Debugger gets the items to populate the Clippings
menu and the Clippings inspector. The Scripts folder is where Script Debugger gets the
items to populate the Scripts menu and the Scripts inspector. The Script Libraries
folder is where Script Debugger will automatically look for a library to attach to a
script. You can modify the contents of these folders.

Script Debugger automatically populates these folders to start with. If you need Script
Debugger to perform this automatic population again, move the ~/Library/Application
Support/Script Debugger 4.5 folder aside (for example, drag it to the desktop), then
quit Script Debugger and start it up again. Now you can move your own materials
back into place if desired.

~/Library/Preferences
Script Debugger keeps one preference file here, com.latenightsw.ScriptDebugger.plist.
This contains a lot of information, including state information for various windows, so
be aware that if you throw out this file, such information will be lost.

Also, Script Debugger maintains the Script Debugger Preferences folder, which
contains the default document that is opened when you create a new script window.

Is Script Debugger’s AppleScript the
Same as Script Editor’s?

Script Debugger Help > Reference > Frequently Asked
Questions > Contents

Is Script Debugger’s AppleScript
the Same as Script Editor’s?

From a purely linguistic point of view, Script Debugger naturally tries to be as compliant as
possible with the standard behavior of the AppleScript language. After all, it wouldn’t be good
if you could write a script in Script Debugger which would not run properly in other
environments. Sometimes, however, “standard behavior” means “buggy” or “inconvenient”.
Apple’s Script Editor, for example, occasionally does things incorrectly, or badly, and Script
Debugger, in doing better, must by definition do differently.

This page summarizes some of the AppleScript differences between Script Debugger and
Script Editor.

Stop Log

The start log and stop log commands are broken in Script Editor, and have been for
years. They work in Script Debugger.

Libraries

Script Debugger’s libraries feature goes a long way towards solving the problem of
modularizing scripts in a clean and simple way, but it isn’t compatible with other script-
editing environments. That is why you have to flatten a script that uses libraries if you intend
to edit it outside Script Debugger.

Alternative OSA Languages

A script editor is supposed to be able to open a compiled script file saved in any OSA
language, not just AppleScript. Script Debugger can do this. Apple’s Script Editor used to be
able to do it too, but in recent versions, it no longer can. Thus, if you save a script in debug
mode, which uses the AppleScript Debugger X OSA language, or if you save a script in the
JavaScript OSA language, Script Editor won’t be able to open it.

Persistence

When a script is saved with Script Debugger, the current values of top-level properties and
globals are saved along with it, and are still there when the script is opened again later.
Script Editor strips these values when it opens a script.

This point is worth a little further explanation. When you open a compiled script with Script
Debugger, the values of top-level entities persist from the last time the script was executed.
They are not reinitialized to their base values until the next time the script is compiled.
(Merely running a script, without changing it, does not compile it.)

So, for example, a script’s top-level property greeting might be defined as "howdy", but
it might not actually be "howdy" when you start running the script (unless you compile the
script first), because greeting’s value might have been changed to something else
(typically by the script itself as it ran last time), and the changed value will persist. And
Script Debugger also shows you what the value really is, in the variables pane of the script
window’s result drawer.

But if you so much as open the script with Script Editor, the persistent value is stripped out,
so now when the script is run, greeting is reinitialized to "howdy".

Note: If AppleScript refuses to save your compiled script, generating a “Stack
Overflow” error, the cause might be an AppleScript bug connected with persistent
top-level values. Force the script to recompile to delete the persistent top-level
values, and try saving again.

What’s Installed Where? What’s The Big Deal With Line Endings?

Script Debugger Help > Reference > Frequently Asked
Questions > Contents

What’s The Big Deal With Line
Endings?

AppleScript makes line endings a complicated issue. Script Debugger does a lot to make
them simple, or at least transparent. But sooner or later you may run into problems with line
endings, so here’s an explanation.

Imagine that two mighty forces are at work, tussling with line endings:

• The AppleScript compiler. AppleScript is a compiled language, and this
compilation involves a transformation performed directly on your code. Your code
starts life as ordinary text, but when it is compiled, your file becomes a compiled
script file, and you are shown the decompiled bytecode. The AppleScript compiler
goes back to the early 1990s, a time when Macintosh line endings were all CR
(ASCII 13). So, after compilation, every complete line of code in your compiled
script file ends with a CR.

• Unix. Mac OS X is Unix, and the standard Unix line-end character is LF (ASCII 10).
For example, a script written in a Unix scripting language such as Perl or Ruby needs
to have LF line endings or it may not run properly. Many Mac OS X text applications
conform to this standard as well. For example, when you create a new multi-line file
in TextEdit and save it as plain text, the line endings are LF. This issue is particularly
acute in AppleScript when you use do shell script, because a multi-line string
intended for the Unix shell will usually expect LF as a line-end character.

So, the AppleScript compiler wants your line endings to be CR, but Mac OS X wants your line
endings to be LF. The conflict between these forces is always going on. Sometimes this
conflict works behind the scenes — for example, the AppleScript compiler will change your
line endings to CR, no matter what they were before, and that’s that. But the conflict also
arises up front, every time you press the Return key while you’re typing in a script file. At
that moment, some character needs to be entered, so what should it be?

Script Debugger helps you deal with this conflict, in two main ways:

• Visibility. Script Debugger makes it possible for you to see your line endings — you
can show invisibles.

• Freedom of Choice. Script Debugger lets you choose what character the Return
key enters; it’s an Editor preference (New Line Character). The factory default for
this preference is LF, and if you create a new multi-line script with the preference
set this way, and invisibles showing, you can actually watch AppleScript change the
line endings from LF to CR when you compile.

Script Debugger also lets you choose what line endings should be used when you save a
script as text. This, however, introduces a further complicating factor.

The problem stems from the fact that in AppleScript, a literal string can span multiple lines:

set s to "
"

The integrity of the line-end character within this string (which might be LF or CR) is
preserved through decompilation, because behind the scenes the compiled script is just
bytecode (and the byte in question is part of a literal string). But now suppose you elect to
save this script as text. What should Script Debugger do? The character after the first " is a
line ending. If you tell AppleScript to save with CR line endings or LF line endings, this
character will become CR or LF, respectively, regardless of what it is “really” supposed to be
(thus possibly altering the functionality of your script).

This is why Script Debugger provides the As Is (Mixed) option (the default), which leaves all
line endings in the resulting text file the same as in your compiled script. The totally safe
solution, though, is not to use any literal line endings within quoted strings. Don’t use the
“escaped” literals "\r" or "\n", because the AppleScript decompiler turns these into actual
line endings. Instead, construct your strings in code, generating line endings at runtime with
the return global variable or the ascii character command. Of course, if you never
save as text, then the issue doesn’t arise in the first place.

Finally, be aware that pasting (or dragging) from a text file into a script can raise line-end
character issues. What is pasted is text, which can have any kind of line ending. Script
Debugger does not magically convert these as the paste is performed. If there are multi-line
string literals in what is pasted, or if the target script is text, incorrect line endings may now
be present in the script. Again, show invisibles will be a great help here.

Is Script Debugger’s AppleScript the
Same as Script Editor’s?

Why Do Applications Open
Spontaneously?

Script Debugger Help > Reference > Frequently Asked
Questions > Contents

Why Do Applications Open
Spontaneously?

Why do applications open spontaneously? The trouble is that certain applications must be
running in order to provide a dictionary. So every time AppleScript needs the dictionary of
such an application — not just in order for a script editor to display a dictionary, but in order
to compile or decompile a script that targets that application — the application must start up
if it isn’t running. A very small number of applications have long had “dynamic dictionaries”,
but with Mac OS X and Cocoa, the proportion of applications that behave this way suddenly
went way up. So it’s a problem with the system, and with how AppleScript works. It has
nothing to do with Script Debugger. In fact, Script Debugger does two things to reduce this
behavior.

Opening and Decompiling a Script

When you open a script that targets an application which must be launched in order for
AppleScript to decompile it, Script Debugger detects this and optionally presents a dialog. For
example, suppose the script targets BBEdit, which has a dynamic dictionary; you will (if the
corresponding General preference is checked) see this dialog:

You can proceed to open the script (and allow BBEdit to launch) if you wish, but perhaps the
overhead of launching an application just to read a script seems unwarranted. If this script
was saved with Script Debugger, it contains a text version, and you can click Open As Text to
open that instead. Thus you can read the script without launching BBEdit.

To compile the script, however, you will have to let AppleScript launch BBEdit. And, if the
script does not contain a text version, the Open As Text button won’t appear; your only
choices will be to open the script and let AppleScript launch BBEdit, or to cancel and not open
the script at all.

Opening a Dictionary

Script Debugger makes heavy use of an application’s dictionary. For example, in order to
calculate the tell context, Script Debugger must load the target application’s dictionary. This
could cause the target application to launch if it is not running. And Script Debugger needs
the tell context when you start to open the File menu (because of the Open XXX’s Dictionary
menu item), so there may be a delay as you choose from the File menu, while the target
application launches. And then, of course, there’s the whole business of what happens when
you search the dictionaries of multiple applications simultaneously.

The good news, however, is that this should happen only once for each application. Script
Debugger caches an application’s dictionary (in ~/Library/Caches/Script Debugger 4.5) when
it opens the dictionary, provided you have not unchecked Cache generated dictionaries in
the Dictionary preferences. So, as long as the application’s dictionary and location don’t
change, Script Debugger won’t have to launch that application again in order to access its
dictionary.

Note that this has nothing to do with the discussion under “Opening and
Decompiling a Script” earlier on this page. Even when Script Debugger has cached
(say) BBEdit’s dictionary, AppleScript has not, so when you open a script that
targets BBEdit, AppleScript will still try to launch BBEdit if it isn’t running.

However, you can uncheck Cache generated dictionaries, or clear the cache on demand
by clicking Clear Cache, and there are certain specialized circumstances where you might
wish to do this. In particular, some applications with ‘aete’ dictionaries allow those
dictionaries to be extended through plug-ins (notable examples are QuarkXPress and
InDesign). Script Debugger has no way to notice when you add or remove a plug-in, so the
dictionary that it displays, coming from the cached copy, will be out of date.

Applications that do not use this plug-in architecture do not present any difficulties,
and are irrelevant here. If you install a new version of an application, Script
Debugger will notice that the dictionary has changed and will automatically refresh
the cached copy.

So, if you use these applications, it is up to you to remember to remove the cached copy of
the dictionary each time you alter the application by adding or removing plug-ins. There are
three ways, or levels, for doing this:

• Uncheck Cache generated dictionaries. This is very brute-force, because it
prevents caching altogether. Applications will open spontaneously a lot, and all
opening of dictionaries by Script Debugger will be slower than normal.

• Keep Cache generated dictionaries checked, but click Clear Cache when needed.
This is only slightly brute-force. You allow caching to work normally, but every once
in a while you throw away the caches. So most of the time you are getting all the
benefits of caching. But you are throwing away the caches for all the dictionaries,
when only one dictionary (Quark or InDesign) is the problem.

• Throw away the cache for the problematic application, manually. Quit Script
Debugger, open ~/Library/Caches/Script Debugger 4.5, find the cache for your
problem application’s dictionary, and move it to the Trash. This is the best solution.
The start of the cache file’s name will be either the application’s name (e.g.
“Microsoft Word 7c5d2075.sdef”) or its bundle identifier (e.g. “com.apple.mail
b521204d.sdef”).

What’s The Big Deal With Line Endings? Hey, Script Debugger Changed My
Formatting!

Script Debugger Help > Reference > Frequently Asked
Questions > Contents

Hey, Script Debugger Changed
My Formatting!

Sometimes it happens that the appearance of your script is changed in ways you never
intended. For example, you carefully use the line continuation character to break up a long
line of code, like this:

set r to display dialog "What is your favorite color?" ¬
default answer "Blue. No, red!" ¬
buttons "Aaaaaaaagh!" ¬
default button "Aaaaaaaagh!" ¬
with title "A Crucial Test"

But suddenly it appears broken up all incorrectly, like this:

set r to display dialog ¬
"What is your favorite color?" default answer ¬
"Blue. No, red!" buttons ¬
"Aaaaaaaagh!" default button ¬
"Aaaaaaaagh!" with title "A Crucial Test"

Why is Script Debugger doing this to you? We’re sorry this is happening, but Script Debugger
has nothing to do with it. This is a “feature” of AppleScript. It has to do with the fact that a
script is compiled into bytecode and then displayed to you in decompiled form. There are
some annoying behaviors deep within that round-trip process, and this is one of them.
There’s nothing Script Debugger can do to prevent it.

A related behavior is that although AppleScript will let you use a term’s synonym, it will also
sometimes replace the synonym in the decompiled script. So, for example, close
document 2 saving false is legal, but it is changed to close document 2
without saving (and you are probably familiar with the expansion of app to
application, ref to a reference to, and so forth).

Why Do Applications Open
Spontaneously?

Why Doesn’t My Script Debug Properly?

Script Debugger Help > Reference > Frequently Asked
Questions > Contents

Why Doesn’t My Script Debug
Properly?

There are some known cases where a script that runs fine normally will generate a spurious
error when you’re in debug mode, thus making it impossible to debug it.

If you run into this sort of situation, try changing any repeat with … in blocks to normal
repeat with loops. For example, this script chokes in debug mode:

tell application "BBEdit"
tell document 1

set L to (get every word where its text begins with "t")
repeat with aWord in L

tell contents of aWord
change case of it making capitalize words

end tell
end repeat

end tell
end tell

But this version works fine:

tell application "BBEdit"
tell document 1

set L to (get every word where its text begins with "t")
repeat with i from 1 to (count L)

tell (item i of L)
change case of it making capitalize words

end tell
end repeat

end tell
end tell

Let us know if you run into any other cases.

Hey, Script Debugger Changed My
Formatting!

How Do I Script Script Debugger?

Script Debugger Help > Reference > Frequently Asked
Questions > Contents

How Do I Script Script Debugger?

Script Debugger 4.5 is scriptable. Moreover, you can script Script Debugger from within
Script Debugger itself, either from a script window or from a script in the Scripts menu.

Such a script need not include a tell block targeting Script Debugger; Script Debugger will
implicitly be the tell target. However, for development and debugging purposes it is better to
supply a tell block (tell application "Script Debugger 4.5"), because if you
don’t, the returned values in the result pane will be less helpful.

Script Debugger will appear among the applications listed under File > Open Dictionary and
in the Known Applications inspector, so you can easily open its dictionary.

The dictionary is fairly self-explanatory, so a detailed discussion of scripting Script Debugger
should be unnecessary. But here are a few points that deserve attention.

Opening Things

Some kinds of Script Debugger window can be opened:

• To open the Apple Event Log window, say open Apple Event Log. You can
access the Apple Event log window as the Apple Event log property of the
application object.

• To open the Scripting Additions dictionary window, say open scripting
additions dictionary. You can access this window as the scripting
additions dictionary property of the application object.

• To open an application’s dictionary, open the application. The simplest approach is
to take advantage of path to application; so, for example, open (path to
application "BBedit").

• To create a new empty script window, say make new document.

All open windows are elements of the application object. You can get a complete list by
asking for every window, or you can get a list of windows in a particular category by
asking for e.g. every dictionary window or every script window.

Every script window is associated with exactly one document (it has a document
property). The two classes are not interchangeable, but a script window and its document
have the same id. This is fairly standard Cocoa Scripting stuff.

Documents are numbered front to back, so the numbering is volatile. In other words,
document 1 is the document of whatever script window is frontmost at that moment.

Closing Things

To close a window, use the close command.

However, when your script running within Script Debugger wants to close a script window (or
document), you must provide the full form and you must not use the saving ask option,
or Script Debugger will throw an error. So, for example, you can say close document 2
without saving, and you can say close document 2 saving yes if the file has
been previously saved, but you cannot say simply close document 2, nor can you say
close document 2 saving ask.

By the same token, if document 2 has never been saved, you cannot say simply save
document 2. You must supply the full form, with an in parameter specifying where to
save.

The reason is that when Script Debugger is scripting itself, we cannot pause the script while
the user interacts with the “Do you want to save changes?” dialog or the Save File dialog. So
you must avert such interaction by stating explicitly what you want done with the document.

Manipulating Things

As you would expect, most interaction with objects is through their properties. Look, for
example, at the properties of a document or a dictionary window or an Apple Event Log
window to see all the manipulations you can perform. For example, to switch a script to
debug mode, set the document’s debugger enabled to true.

There are two ways to manipulate the contents of a script. First, you can get or set a script’s
entire contents as text, through the document’s script source property; you can also get
and set a script’s entire contents as a script object, through the document’s script
property.

You can also manipulate a script’s selection. If you get selection you are handed mere
text, but if you ask for selection as point or character range of selection,
what you get is a list of two integers, the character offset after the insertion point or the start
of the selection (the first character offset is 1) and the count of characters in the selection.
Similarly, you can set selection to alter the selected text, but if what you set the
selection to is a list of two integers, or if you set character range of selection to
such a list, you reposition the selection.

So, for example, here’s a crude but effective utility for selecting a given line of a given script:

on selectLine(num, docnum)
tell application "Script Debugger 4.5"

tell document docnum
set L to every paragraph of (get script source)
set offs to 1
repeat with i from 1 to (num - 1)

set aLine to item i of L
set offs to offs + (length of aLine) + 1

end repeat
set selection to {offs, length of item num of L}

end tell
end tell

end selectLine
selectLine(3, 2) -- or whatever

Running Scripts

Script Debugger provides a repertory of specialized commands for making a script (a
document) do such things as compile, execute, step into, and so on.

Execution causes compilation. After calling execute, you can check whether compilation
succeeded by examining the document’s compiled property.

Some of these commands come with a caveat: execute, pause, step into, step out,
and step over all share the feature that they can return before the script has stopped or
paused (and start recording can return before the script has started recording). This is
a consequence of Script Debugger’s multi-threaded architecture.

The correct approach, therefore, if you wish to proceed after the script has done what you
asked it to do, is to poll the document’s execution state property. So, for example,
here’s a script that provides a utility for waiting until the document is paused or stopped, and
shows how to use it in connection with execute.

on waitUntilReady(d)
repeat while execution state of d is not in {stopped, paused}

delay 0.2
end repeat

end waitUntilReady
-- and here's how to use it
tell application "Script Debugger 4.5"

set d to document "convertFigures"
tell d

execute
my waitUntilReady(d)
if not compiled then return last error message -- compilation failed, get error
if last error message is not missing value then -- execution failed, get error

return last error message
end if
return last result -- execution succeeded, get result

end tell
end tell

Future Directions

We’d like to provide fuller scriptability, but this takes work, so we would prefer to go in
directions that our users will actually use. If Script Debugger’s scriptability lacks a feature
you need, do let us know.

Why Doesn’t My Script Debug Properly?

	Script Debugger Help
	About This Help Document:

	Opening and Saving Scripts
	Open
	Compatibility
	Opening a Compiled Script as Text
	Save
	Formats
	Compiled Script
	Application
	Text
	Run-Only Script
	What Is Saved
	File Owner
	Spotlight and Quick Look
	Spotlight
	Quick Look

	Description
	Library
	Technical Details About Libraries
	How Libraries Are Attached to a Script
	Duplicate Library Definitions
	An Obscure Top-Level Entity Bug

	Manifest
	Explore
	Dictionary
	Open Dictionary
	Open Any Dictionary
	Current Applications
	Current Context
	Known Applications
	Scripting Additions
	Dictionary Window
	Browser
	Types of Entities Shown in the Dictionary Browser
	Dictionary Info Pane
	Hierarchies and Diagrams
	Search in Dictionary
	Look Up Definition
	Back and Forward
	Miscellaneous Dictionary Actions
	Dictionary Views
	Size
	Inheritance
	Extra Documentation
	Apple Event Codes
	Dictionary Format
	Explorer
	Explorer View
	Explorer Details
	Develop
	Edit
	Script Window
	Toolbar
	View
	Line Wrapping
	Invisibles
	Spaces
	Line Numbers
	Tab Stops
	Raw (Chevron) Syntax
	Language
	Default Script Size and State
	Editing and Navigation
	Editing
	Navigation

	Block Structure
	Block Entry (Auto-Closing)
	Block Viewing and Selection
	Block Selection (Balance)

	Delimiters
	Delimiter Entry (Auto-Pairing)
	Delimiter Checking As You Type
	Delimiter Selection (Balance)

	Text Completion
	Text Substitution
	Miscellaneous Typing and Selection
	Tell
	Clippings
	How Clippings Work
	Inserting Content
	Shift
	Comment
	Tab
	Splitting the Editor
	Find
	Go To
	Navigate
	External Editor
	Run
	Compile
	Execute
	Testing Handlers
	Standard Event Handlers
	The Current Event
	Parameters and the Event History
	Other Handlers

	Result
	Viewer
	Viewer Options

	Best
	Source
	AEPrint
	Pretty-Print
	Times
	Variables
	Errors
	Compile Error
	Runtime Error

	Leaks
	Apple Event Log
	Logging Modes and Views
	Record
	Default Target
	Parent Script
	Debug
	Turning On Debugging
	Pause
	Execute When Debugging
	Breakpoints
	Execute to Here
	Step
	Trace
	Call Stack
	Variables (Debug Mode)
	Expressions
	Exceptions
	Code Coverage
	Apple Event Log (Debugging)
	External Debugging
	Reference
	Menus
	Application Menu
	File Menu
	Edit Menu
	Search Menu
	Script Menu
	Dictionary Menu
	View Menu
	Window Menu
	Clippings Menu
	Scripts Menu
	Help Menu
	Preferences
	Preferences: General
	On Startup:
	On Reopen:
	Saving:
	Opening:
	Mac OS Settings:

	Preferences: Key Bindings
	Preferences: Editor
	Editing Options:
	New Line Character:
	Tab Width:
	Table Of Contents Options:
	Edit > Comment Inserts:
	Background color:
	Cursor color:
	AEPrint color:
	Font sizes:

	Preferences: Text Substitutions
	Automatic Substitution:

	Preferences: Fonts & Colors
	Preferences: Debugger
	Debugging Options:
	Script Error Actions:

	Preferences: Dictionary
	Opening:
	Explorer Options:
	Outline Options:
	Dictionary Caching:

	Preferences: Software Update
	Windows
	Inspectors
	Known Applications Inspector
	Look Up Definition Inspector
	Tell Context Inspector
	Clippings Inspector
	Scripts Inspector
	Windows Inspector
	Glossary
	Glossary: Bundle
	Glossary: Bytecode
	Glossary: Compiled Script File
	Glossary: Dictionary
	Glossary: Fork
	Glossary: Object Model
	Glossary: Scripting Addition
	Glossary: Sdef
	Glossary: Tell Context
	Frequently Asked Questions
	What’s Installed Where?
	Is Script Debugger’s AppleScript the Same as Script Editor’s?
	Stop Log
	Libraries
	Alternative OSA Languages
	Persistence

	What’s The Big Deal With Line Endings?
	Why Do Applications Open Spontaneously?
	Opening and Decompiling a Script
	Opening a Dictionary

	Hey, Script Debugger Changed My Formatting!
	Why Doesn’t My Script Debug Properly?
	How Do I Script Script Debugger?
	Opening Things
	Closing Things
	Manipulating Things
	Running Scripts
	Future Directions

